

出版号 2824329JS

TFG1900A 系列 函数/任意波形发生器

05/2019

TFG1900A 系列 函数/任意波形发生器 简介

本指南适用于 TFG1900A 系列 函数/任意波形发生器的三个型号:

TFG1905A、TFG1910A 和 TFG1920A,正弦波最高频率分别为 5MHz、10MHz 和 20MHz。

TFG1900A 系列 函数/任意波形发生器采用直接数字合成技术(DDS),具有较高的性能指标和丰富的功能特性,能够快速完成各种测量任务。荧光显示界面(VFD)清晰而明亮,使您更便于操作和观察。

仪器具有下述优异的技术指标和强大的功能特性:

- 双路输出:具有 A、B 两个独立的输出通道,两通道特性相同
- **同步输出**:具有同步信号输出
- 频率特性:频率精度 20ppm, 6 位数字显示,分辨率 1 µ Hz
- **幅度偏移特性:**幅度和偏移精度1%,5位数字显示,分辨率0.1mV
- **无量程限制**: 全范围频率不分档, 直接数字设置
- 无过渡过程:频率切换时瞬间达到稳定值,信号相位和幅度连续无畸变
- **波形精度高**:输出波形由函数计算值合成,波形精度高,失真小
- 方波锯齿波:可以设置精确的方波占空比和锯齿波对称度
- **脉冲波**:可以设置精确的脉冲宽度
- 任意波形:具有 11 种内置固定波形和 5 种用户可编辑波形
- 相位特性:可设置 A、B 两路的相位差
- **调制特性:** 可输出 FM、AM、PM、PWM、FSK 调制信号
- **频率扫描:**可输出线性或对数频率扫描信号,扫描始点和终点任意设置
- **脉冲串特性:** 可输出设置数目的脉冲串信号
- **外部触发**:在 FSK 调制、频率扫描和脉冲串功能时可以使用外部触发
- **频率测量:**具有频率测量功能
- **计算功能**:可以选用频率或周期、幅度有效值或峰峰值
- **操作方式**:全部按键操作、荧光显示屏、数字设置或旋钮调节
- **高可靠性**:大规模集成电路,表面贴装工艺,可靠性高,使用寿命长
- 通讯接口: 配置 USB 设备接口,可对仪器进行编程控制和下载波形
- 通讯接口: 配置 USB 主机接口,可用 U 盘存储参数设置和用户波形
- 功率放大:最大输出功率 10W(负载 8Ω)(选件)

TFG1900A 系列 函数/任意波形发生器及附件

•	TFG19xxA 函数/任意波形发生器	1台
•	三芯电源线	1条
•	CD 光盘	1张

光盘内含:

USB 驱动程序 程控演示软件

波形编辑软件

用户使用指南

用户编程指南

波形编辑指南

接口使用说明

本书概要

第一章 快速入门

快速掌握函数/任意波形发生器的基本使用方法。

第二章 原理概述

阐述了函数/任意波形发生器的基本工作原理。

第三章 使用说明

详细叙述了函数/任意波形发生器的功能、操作和应用。

第四章 服务与支持

介绍了产品的保修与技术支持。

第五章 技术参数

介绍了函数/任意波形发生器的性能指标和技术规格

告知:本文档所含内容如有修改,恕不另告。本文档中可能包含有技术方面不够准确的地方或印刷错误。本文档只作为仪器使用的指导,石家庄数英仪器有限公司对本文档不做任何形式的保证,包括但不限于为特定目的的适销性和适用性所作的暗示保证。

	目	录
TFG1900A 系列 函数/任意波形发生器	简介	
TFG1900A 系列 函数/任意波形发生器	及附件	
本书概要		
第一章 快速入门		
1.1 使用准备:		
1.2 熟悉前面板:		
1.3 熟悉后面板:		
1.4 显示说明		
1.5 键盘说明		
1.6 基本操作		9
第二章 原理概述		
2.1 整机原理框图		
2.2 DDS 工作原理		
2.3 控制工作原理		
第三章 使用说明		16
3.1 数据输入		
3.2 A 路连续		
3.3 B 路连续		
3.4 频率调制		
3.5 幅度调制		
3.6 相位调制		
3.7 脉宽调制		
3.8 频移键控		
3.9 频率扫描		
3.10 脉冲串		
3.11 任意波形		
3.12 设置参数存储		
3.13 外部存储器		

3.14	频率测量	30
3.15	输出端口	31
3.16	输入端口	31
3.17	通讯端口	32
3.18	参数校准	32
3.19	出厂默认设置	33
3.20	固件版本号	34
第四章 月	B 务与支持	36
第五章 打	支术参数(注1)	37

第一章 快速入门

本章对 TFG1900A 系列 函数/任意波形发生器的前后面板进行了描述,对信号 发生器的操作及功能作了简要的介绍,使您能尽快掌握其基本使用方法。本章主要 有以下内容:

1.1 使用准备:

1.1.1 检查整机与附件:

根据装箱单检查仪器及附件是否齐备完好,如果发现包装箱严重破损,请先保 留,直至仪器通过性能测试。

1.1.2 接通仪器电源:

仪器在符合以下的使用条件时,才能开机使用。

电压: AC 100~240V 频率: 45~65Hz

功耗: <30VA

温度: 0~40℃ 湿度: <80%

将电源插头插入交流 100~240V 带有接地线的电源插座中,按下面板上的电源 开关,电源接通,仪器进行初始化,然后装入上电设置参数,进入连续工作状态, 输出正弦波形,显示出信号的频率值和幅度值。

警告: 为保障操作者人身安全,必须使用带有安全接地线的三孔电源插座。

1.2 熟悉前面板:

 1. 电源开关
 2. 功能键
 3. CHA 输出
 4. CHB 输出
 5. 同步输出

 6. 方向键
 7. 显示屏
 8. 数字键
 9. 调节旋钮

1.3 熟悉后面板:

石家庄数英仪器有限公司

1.4 显示说明

仪器的显示屏具有两组数字显示,左边 6 位数字显示频率、周期、衰减等参数,右边 5 位数字显示幅度、偏移、占空比等参数。显示屏还具有符号和字符显示,用于指示当前信号的波形和参数选项,以及参数值的单位。

1.5 键盘说明

仪器前面板上共有28个按键(见前面板图),各个按键的功能如下。

【0】【1】【2】【3】【4】【5】【6】【7】【8】【9】键: 数字输入键。

【.】键:小数点输入键。

【-】键:负号输入键,在偏移设置和波形编辑时输入负号,在其他时候可以循 环开启和关闭按键声响。

【<】键:光标闪烁位左移键,数字输入过程中的退格删除键。

【>】键: 光标闪烁位右移键。

【Freq/Period】键: 循环选择频率和周期, 在校准功能时取消校准。

【Amp1/Offset】键: 循环选择幅度和偏移。

【Width/Duty】键: 循环选择脉冲宽度和方波占空比或锯齿波对称度。

【FM】【AM】【PM】【PWM】【FSK】【Sweep】【Burst】键:分别选择频率调制、幅度调制、相位调制、脉宽调制、频移键控、频率扫描和脉冲串功能,再按返回连续功能。

【Count/Edit】键: 在 A 路用户波形时选择波形编辑功能,其他时候选择频率测量功能,再按返回连续功能。

【Menu】键:菜单键,循环选择当前功能下的菜单选项(见功能选项表)。

【Shift/Local】键:选择上档键,在程控状态时返回键盘功能。

【Output】键: 循环开通和关闭输出信号。

【Sine】【Square】【Ramp】【Pulse】键:上档键,分别快速选择正弦波、 方波、锯齿波和脉冲波四种常用波形。

【Waveform】键:上档键,使用波形序号分别选择 16 种波形。

【CHA/CHB】键: 上档键, 循环选择输出通道 A 和输出通道 B。

【Trig】键: 上档键, 在频率扫描和脉冲串功能时用作手动触发。

【Ca1】键: 上档键,选择参数校准功能。

单位键:下排左边五个键的上面标有单位字符,但并不是上档键,而是双功能 键,直接按这五个键执行键面功能,如果在数据输入之后再按这五个键,可以选择 数据的单位,同时作为数据输入的结束。

功能选项表

功能	选项
A 路连续	幅度衰减、输出模式、状态和波形存储、状态调出
B 路连续	幅度衰减、输出模式、AB 相位差、版本号
频率调制	频率偏差、调制频率、调制波形、调制源
幅度调制	调幅深度、调制频率、调制波形、调制源
相位调制	相位偏差、调制频率、调制波形、调制源
脉宽调制	脉宽偏差,调制频率、调制波形、调制源
频移键控	跳变频率、跳变速率、触发源
频率扫描	始点频率、终点频率、扫描时间、扫描模式、触发源
脉冲串	重复周期、脉冲计数、起始相位、触发源
波形编辑	编辑点号、水平相位、垂直电压
频率测量	闸门时间
参数校准	零点校准、偏移校准、幅度校准、频率校准、平坦度校准

1.6 基本操作

下面举例说明基本操作方法,可满足一般使用的需要,如果遇到疑难问题或较复杂的使用,可以仔细阅读第三章使用说明中的相应部分。

1.6.1 A 路连续功能: A 路输出单一频率的稳态连续信号。

按【Shift】【CHA/CHB】键,选中"CHA"选项,可以设定通道 A 的参数。

频率设定: 设定频率值 3.5kHz

按【Freq】键选中"Hz"单位,按【3】【.】【5】【kHz】。

频率调节:按【<】或【>】键可移动光标闪烁位,左右转动旋钮可使光标闪 烁位的数字增大或减小,并能连续进位或借位。光标向左移动可以粗调,光标向右 移动可以细调。其他选项数据也都可以使用旋钮调节,以后不再重述。

周期设定: 设定周期值 2.5ms

按【Period】键选中"s"单位,按【2】【.】【5】【ms】 。
幅度设定: 设定幅度值为 1.5Vpp
按【Amp1】键选中"Vpp"单位,按【1】【.】【5】【Vpp】 。
衰减设定: 设定衰减 0dB
按【Menu】键选中"Atten"选项,按【0】【dB】 。
偏移设定: 设定直流偏移-1Vdc
按【Offset】键选中"Vdc"单位,按【-】【1】【Vdc】 。
常用波形选择: 选择方波
按【Shift】【Square】。
占空比设定: 设定方波占空比 20%
按【Duty】键,按【2】【0】【%】 。
其它波形选择: 选择指数函数波形(波形序号 5,见波形序号表)
按【Shift】【Waveform】键,按【5】【#】。
输出模式选择:输出信号与同步信号反相
按【Menu】键选中"Mode"选项,按【1】【#】 。
1.6.2 B路连续功能: B路输出单一频率的稳态连续信号。
按【Shift】【CHA/CHB】键,选中"CHB"选项,可以设定通道 B 的参数。
AB 相位差设定: 设定 AB 两路的相位差 90°
按【Menu】键选中"Phase"选项,按【9】【0】【°】 。
B路的其他参数设置与 A 路相类同。
1.6.3 频率调制功能: 预先设置 A 路连续的频率为 20kHz。
按【FM】键,输出频率调制信号。
调制频率设定: 设定调制频率 10Hz
按【Menu】键,选中"Mod_f"选项,按【1】【0】【Hz】。
频率偏差设定: 设定频率偏差 2kHz
按【Menu】键,选中"Devia"选项,按【2】【kHz】。
调制波形设定: 设定调制波形锯齿波
按【Menu】键,选中"Shape"选项,按【2】【#】。
调制源设定: 设定外部调制源
按【Menu】键,选中"Source"选项,按【1】【#】。

返回连续功能:
在频率调制时,再按【FM】键,可以返回连续功能。
1.6.4 幅度调制功能:
按【AM】键,输出幅度调制信号。
调制频率设定: 设定调制频率 1kHz
按【Menu】键,选中"Mod_f"选项,按【1】【kHz】。
调幅深度设定: 设定调幅深度 50%
按【Menu】键,选中"Depth"选项,按【5】【0】【%】。
调制波形设定: 设定调制波形正弦波
按【Menu】键,选中"Shape"选项,按【0】【#】。
调制源设定: 设定内部调制源
按【Menu】键,选中"Source"选项,按【0】【#】。
返回连续功能:
在幅度调制时,再按【AM】键,可以返回连续功能。
1.6.5 相位调制功能:
按【PM】键,输出相位调制信号。
调制频率设定: 设定调制频率 10kHz
按【Menu】键,选中"Mod_f"选项,按【1】【0】【kHz】。
相位偏差设定: 设定相位偏差 180°
按【Menu】键,选中"Devia"选项,按【1】【8】【0】【°】。
调制波形设定: 设定调制波形方波
按【Menu】键,选中"Shape"选项,按【1】【#】。
调制源设定: 设定外部调制源
按【Menu】键,选中"Source"选项,按【1】【#】。
返回连续功能:
在相位调制时,再按【PM】键,可以返回连续功能。
1.6.6 脉宽调制功能:
按【PWM】键,输出脉宽调制信号。
调制频率设定: 设定调制频率 1Hz
按【Menu】键, 冼中"Mod f"冼项, 按【1】【Hz】,

脉宽偏差设定: 设定脉宽偏差 80%
按【Menu】键,选中"Devia"选项,按【8】【0】【%】。
调制波形设定: 设定调制波形正弦波
按【Menu】键,选中"Shape"选项,按【0】【#】。
调制源设定: 设定内部调制源
按【Menu】键,选中"Source"选项,按【0】【#】。
返回连续功能:
在脉宽调制时,再按【PWM】键,可以返回连续功能。
1.6.7 频移键控功能:波形设置为正弦波。
按【FSK】键,输出频移键控信号。
跳变速率设定: 设定跳变速率 1kHz
按【Menu】键,选中"Rate"选项,按【1】【kHz】。
跳变频率设定: 设定跳变频率 2kHz
按【Menu】键,选中"Hop_f"选项,按【2】【kHz】。
触发源设定: 设定内部触发源
按【Menu】键,选中"Source"选项,按【0】【#】。
返回连续功能:
在频移键控时,再按【FSK】键,可以返回连续功能。
1.6.8 频率扫描功能:
按【Sweep】键,输出频率扫描信号。
始点频率设定: 设定始点频率 5kHz
按【Menu】键,选中"Start"选项,按【5】【kHz】。
终点频率设定:设定终点频率 20Hz
按【Menu】键,选中"Stop"选项,按【2】【0】【Hz】。
扫描时间设定: 设定扫描时间 5s
按【Menu】键,选中"Time"选项,按【5】【s】。
扫描模式设定: 设定对数扫描模式
按【Menu】键,选中"Mode"选项,按【1】【#】。
触发源设定: 设定外部触发源
按【Menu】键,诜中"Source"诜项,按【1】【#】。

单次触发设定:触发一次扫描过程 按【Shift】【Trig】键,触发一次扫描过程。 返回连续功能: 在频率扫描时,再按【Sweep】键,可以返回连续功能。 1.6.9 脉冲串功能:连续频率设置为1kHz 按【Burst】键,输出脉冲串信号。 重复周期设定:设定重复周期5ms 按【Menu】键,选中"Period"选项,按【5】【ms】。 脉冲计数设定:设定脉冲计数1个 按【Menu】键,选中"Ncyc"选项,按【1】【#】。 起始相位设定:设定起始相位180° 按【Menu】键,选中"Phase"选项,按【1】【8】【0】【°】。 触发源设定:设定内部触发源 按【Menu】键,选中"Source"选项,按【0】【#】。 返回连续功能:

在脉冲串功能时,再按【Burst】键,可以返回连续功能。

第二章 原理概述

通过本章内容,您可以了解到信号形成的基本概念和仪器的内部操作,从而对仪器 的性能指标有更深刻的理解,便于您更好的使用本仪器。

2.1 整机原理框图

从数字合成以后,分成A、B两个相同的通道,图中只画出一个通道的框图。

2.2 DDS 工作原理

要产生一个电压信号, 传统的模拟信号源是采用电子元器件以各种不同的方式组成

振荡器,其频率精度和稳定度都不高,而且工艺复杂、分辨率低,频率设置和实现计算 机程控也不方便。直接数字合成技术(DDS)是一种数字化的信号产生方法,它完全没 有振荡器元件,而是用数字合成方法产生一连串数据流,再经过数模转换器产生出一个 预先设定的模拟信号。

例如要合成一个正弦波信号,首先将函数 Y=SinX 进行数字量化,然后以 X 为 地址,以 Y 为量化数据,依次存入波形存储器。DDS 使用了相位累加技术来控制波 形存储器的地址,在每一个采样时钟周期中,都把一个相位增量累加到相位累加器 的当前结果上,通过改变相位增量即可以改变 DDS 的输出频率值。根据相位累加器 输出的地址,由波形存储器取出波形量化数据,经过数模转换器和运算放大器转换 成模拟电压。由于波形数据是间断的取样数据,所以 DDS 发生器输出的是一个阶梯 正弦波形,必须经过低通滤波器将波形中所含的高次谐波滤除掉,输出即为连续的正 弦波。数模转换器内部带有高精度的基准电压源,因而保证了输出波形具有很高的 幅度精度和幅度稳定性。

幅度控制器是一个乘法数模转换器,经过滤波后的模拟信号作为数模转换器的 电压基准,与数字设定的幅度值相乘,使输出信号的幅度等于数字设定的幅度值。 偏移控制器也是一个乘法数模转换器,使用一个高精度的直流电压基准,与数字设 定的偏移值相乘,使输出信号的偏移等于数字设定的偏移值。经过幅度偏移控制器 的合成信号再经过电压放大和功率放大,最后由输出端口输出。

2.3 控制工作原理

微控制器通过接口电路控制键盘及显示部分,当有键按下时,微控制器识别出 被按键的编码,然后转去执行该键的命令程序。显示电路将仪器的工作状态和各种 参数显示出来。

面板上的旋钮可以用来改变光标指示位的数字,每旋转15度角可以产生一个触 发脉冲,微处理器能够判断出旋钮是左旋还是右旋,如果是左旋则使光标指示位的 数字减一,如果是右旋则加一,并且连续进位或借位。

第三章 使用说明

3.1 数据输入

3.1.1 数字键输入 一个项目选中以后,可以用数字键输入该项目的参数值。 十个数字键用于输入数据,输入方式为自左至右移位输入。数据中可以带有小数 点,如果一次数据输入多个小数点,则只有第一个小数点为有效。在"偏移"功能 时,可以输入负号。使用数字键只是把数字写入显示区,这时数据并没有生效,如 果数据输入错误,在按单位键之前,可以按【<】键退格删除,也可以重新选择该 项目,然后输入正确的数据。数据输入完成以后,必须按单位键作为结束,输入数 据才开始生效。

数据的输入可以使用小数点和单位键任意搭配, 仪器都会按照一定的格式将数据显示出来。例如输入 1.5kHz 或 1500Hz, 数据生效之后都会显示为 1.50000kHz

3.1.2 旋钮调节 实际应用中,有时需要对信号进行连续调节,这时可以使用 数字调节旋钮。在数字显示中,有一个光标闪烁位,按移位键【<】或【>】,可 以使光标闪烁位左移或右移,面板上的旋钮为数字调节旋钮,向右转动旋钮,可使 光标闪烁位的数字连续加一,并能向高位进位。向左转动旋钮,可使光标闪烁位的 数字连续减一,并能向高位借位。使用旋钮输入数据时,数字改变后即刻生效,不 用再按单位键。光标闪烁位向左移动,可以对数据进行粗调,向右移动则可以进行 细调。

3.1.3 输入方式选择 对于已知的数据,使用数字键输入最为方便,而且不管 数据变化多大都能一次到位,没有中间过渡性数据产生,这在一些应用中是非常必 要的。对于已经输入的数据进行局部修改,或者需要输入连续变化的数据进行观测 时,使用调节旋钮最为方便,操作者可以根据不同的应用要求灵活选择。

3.2 A 路连续

"A 路连续"是指通道 A 的输出信号是稳态连续的,信号的波形、频率、幅度和相位都不随时间改变。

按【Shift】【CHA/CHB】键,选中"CHA"选项,可以设定通道 A 的参数。

3.2.1 频率设定 按【Freq】键, "Freq"键盘灯亮,选中"Hz"单位,显示出当前频率值。可用数字键或调节旋钮输入频率值,在输出端口即有该频率的信号

输出。

3.2.2 周期设定 按【Period】键, "Period"键盘灯亮,选中"s"单位, 显示出当前周期值,可用数字键或调节旋钮输入周期值。但是仪器内部仍然是使用 频率合成的方式,只是在数据的输入和显示时进行了换算。由于受频率低端分辨率 的限制,在周期较长时,只能输出一些间隔的频率点,所设定的周期值与实际输出 的周期值可能有些差异,这一点在使用中应该注意。

3.2.3 幅度设定 按【Amp1】键, "Amp1"键盘灯亮,选中"Vpp" 或 "Vrms"单位,显示出当前幅度值,可用数字键或调节旋钮输入幅度值,在输出端 口即有该幅度的信号输出。

最大幅度值和直流偏移值应符合下式规定,如果幅度值设定超出了规定,仪器 将修改设定值,使其限制在允许的最大幅度值。

 $Vpp \leq 2 \times (10 - |offset|)$

3.2.4 幅度值的格式 幅度值的输入和显示有两种格式: 峰峰值和有效值。数 字输入后按【Vpp】或【mVpp】可以输入幅度峰峰值,按【Vrms】或【mVrms】可以 输入幅度有效值。幅度有效值只能在正弦波、方波、锯齿波和脉冲波四种常用波形 时使用,在其他波形时只能使用幅度峰峰值。

3.2.5 幅度衰减设定 按【Amp1】键,选中"Atten"选项,显示出当前衰减 值。开机后幅度衰减默认自动方式,显示"Auto",仪器根据幅度设定值的大小, 自动选择合适的衰减比例。这时不管信号幅度大小都可以得到较高的幅度分辨率和 信噪比,波形失真也较小。但是在衰减切换时,输出信号会有瞬间的跳变,这种情 况在有些应用场合可能是不允许的。因此仪器设置有固定衰减方式。可用数字键输 入衰减值 0dB、20dB、40dB 和 60dB,输入 80dB 时为自动衰减方式 Auto。也可以使 用旋钮调节,旋钮每转一步衰减变化一挡。如果选择了固定衰减方式,在信号幅度 变化时衰减档固定不变,可以使输出信号在全部幅度范围内变化都是连续的,但在 0dB 衰减档时如果信号幅度较小,则对波形失真和信噪比会有不利的影响。

3.2.6 输出负载 幅度设定值是在输出端口开路时校准的,输出负载上的实际 电压值,等于幅度设定值乘以负载阻抗与输出阻抗的分压比,仪器的输出阻抗固定为 50 Ω,当负载阻抗足够大时,分压比接近于 1,输出阻抗上的电压损失可以忽略不 计,输出负载上的实际电压值接近于幅度设定值。但当负载阻抗较小时,输出阻抗上的 电压损失已不可忽略,负载上的实际电压值与幅度设定值是不相符的,这点应予注 意。特别是在频率较高时,输出和负载上感抗和容抗的变化会引起较大的误差。

由于具有 50Ω输出电阻,输出端瞬间短路不会造成损坏,但应尽量避免在高电 压输出时长时间短路,以免对仪器造成伤害。仪器具有防倒灌措施,当输出端不慎 接入较高电压时(小于 30V),仪器自动关闭输出,并有声音报警,输出指示灯熄 灭。必须在故障排除以后,才能按【0utput】键开启输出。

3.2.7 偏移设定 按【Offset】键, "Offset"键盘灯亮,选中"Vdc" 单位,显示出当前偏移值。可用数字键或调节旋钮输入偏移值,输出信号便会产生设定的直流偏移。

直流偏移值和幅度值应符合下式规定,如果偏移值设定超出了规定,仪器将修 改设定值,使其限制在允许的最大偏移值。

 $|offset| \leq 10-Vpp \div 2$

对输出信号进行直流偏移调整时,使用调节旋钮要比使用数字键方便得多。按照一般习惯,不管当前直流偏移是正值还是负值,向右转动旋钮直流电平上升,向 左转动旋钮直流电平下降,经过零点时,偏移值的正负号能够自动变化。

3.2.8 直流电压输出 将幅度设定为 0V,那么偏移值可在±10V 范围内任意设定,仪器就变成一台直流电压源,可以输出设定的直流电压信号。

3.2.9 输出波形选择 仪器具有 16 种波形,其中正弦波、方波、锯齿波和脉冲波四种常用波形,分别使用上档键【Shift】【Sine】、【Shift】【Square】、 【Shift】【Ramp】和【Shift】【Pulse】直接选择,并显示出相应的波形符号。 其他波形的波形符号为"Arb"。全部 16 种波形都可以使用波形序号选择,按上档 键【Shift】【Waveform】,显示出当前波形序号,可用数字键或调节旋钮输入波 形序号,即可以选中由序号指定的波形,16 种波形序号如下表所示。

序号	波形	名称	序号	波形	名称
00	正弦波	Sine	08	半圆函数	Half round
01	方波	Square	09	心电图波形	Cardiac
02	锯齿波	Ramp	10	振动波形	Quake
03	脉冲波	pulse	11	用户波形1	User1

波形序号表

TFG1900A 系列 函数/任意波形发生器 用户使用指南

04	噪声波	Noise	12	用户波形 2	User2
05	指数函数	Exponent	13	用户波形 3	User3
06	对数函数	Logarithm	14	用户波形 4	User4
07	Sinc 函数	Sin(x)/x	15	用户波形 5	User5

3.2.10 占空比设定 波形选择为方波,按【Duty】键,"Duty"键盘灯亮,显示出当前占空比值,可用数字键或旋钮输入占空比数值,输出即为设定占空比的方波。当方波频率变化时,占空比保持不变。方波占空比的定义是,方波的高电平部分所占用的时间与方波周期的比值。当方波频率较高时,占空比的设置会受到边沿时间的限制,应符合下式规定:

占空比×周期≥2×边沿时间 或 占空比×周期≤周期-(2×边沿时间)

3.2.11 对称度设定 波形选择为锯齿波,按【Duty】键,"Duty"键盘灯 亮,显示出当前对称度值,可用数字键或旋钮输入对称度数值,输出即为设定对称 度的锯齿波。当锯齿波频率变化时,对称度保持不变。锯齿波对称度的定义是,锯 齿波的上升部分所占用的时间与锯齿波周期的比值。当对称度为 100% 时称为升锯 齿波,当对称度为 0% 时称为降锯齿波,当对称度为 50% 时称为三角波。

3.2.12 脉冲宽度设定 波形选择为脉冲波,按【Width】键,"Width"键盘灯 亮,显示出当前脉冲宽度值,可用数字键或旋钮输入脉冲宽度数值,输出即为设定 脉冲宽度的脉冲波。当脉冲波频率变化时,脉冲宽度保持不变。脉冲宽度的定义 是,脉冲波的高电平部分所占用的时间值。当脉冲波频率较高时,脉冲宽度的设置会 受到边沿时间的限制,应符合下式规定:

脉冲宽度≥2×边沿时间 或 周期-脉冲宽度≥2×边沿时间

3.2.13 输出模式设定 按【Menu】键,选中"Mode"选项,显示出输出模式 值,可用数字键或调节旋钮设定模式值。模式设定只有 0 和 1 两个值,设定为 0 时 输出端口与同步端口的信号同相,设定为 1 时输出端口与同步端口的信号反相。

3.3 B 路连续

"B 路连续"是指通道 B 的输出信号是稳态连续的,信号的波形、频率、幅度 和相位都不随时间改变。 按【Shift】【CHA/CHB】键,选中"CHB"选项,可以设定通道 B 的参数。

3.3.1 AB 相位差设定 当 AB 两通道的频率相同时,按【Menu】键选中 "Phase"选项,显示出 AB 两通道的相位差,可用数字键或旋钮输入相位差值,AB 两通道的信号可具有设定的相位差。当 AB 两通道的频率不同时,相位差的设定没有 意义。

B 路的其他参数设置与 A 路相类同。

下面详述 FM、AM、PM、PWM、FSK 调制、频率扫描、脉冲串和任意波形功能, 这些功能都只适用于 CHA 通道。

3.4 频率调制 (FM)

在频率调制中,载波的频率是随着调制波形的瞬时电压而变化的,载波的波形可以使用波形表中的14种波形,脉冲波和白噪声除外。在进入频率调制之前,应先在A路连续功能中设置好载波的波形、频率值和幅度值。

按【FM】键, "FM"键盘灯亮, A 路可输出频率调制信号。

3.4.1 频率偏差:按【Menu】键,选中"Devia"选项,可以设定频率偏差 值。频率偏差表示在频率调制过程中,调制波形达到满幅度时载波频率的变化量。 在调制波的正满度值,输出频率等于载波频率加上频率偏差;在调制波的负满度 值,输出频率等于载波频率减去频率偏差。因此,频率偏差设置须符合两个条件;

(载波频率-频率偏差)>0

(载波频率+频率偏差) < 仪器频率上限

3.4.2 调制频率:按【Menu】键,选中"Mod_f"选项,可以设定调制频率 值。在频率调制中,调制频率一般远低于载波频率。

3.4.3 调制波形: 按【Menu】键,选中"Shape"选项,可以通过设定波形序 号来设定调制波形。调制波形可以使用波形表中的 14 种波形,脉冲波和白噪声除 外。

3.4.4 调制源: 按【Menu】键,选中"Source"选项,可以设定调制源,调制源只有 0 和 1 两个值。设定为 0 使用内部调制源,设定为 1 使用外部调制源。如果使用外部调制源,可以从仪器后面板《Modulation In》端口输入调制信号。当外部调制信号满幅度为±5V 时,则频率偏差的显示与实际频率偏差相符合,否则频率

偏差的显示是不正确的。

3.4.5 同步输出: 在频率调制期间,从仪器前面板《Sync》端口输出一个同步 信号,同步信号是一个占空比 50%的 TTL 方波,方波的频率等于调制波的频率,方 波的相位以调制波的相位为参考。

在频率调制时,再按【FM】键,"FM"键盘灯灭,仪器退出频率调制功能,返回到连续功能。

3.5 幅度调制 (AM)

在幅度调制中,载波的幅度是随着调制波形的瞬时电压而变化的,载波的波形可以使用波形表中的14种波形,脉冲波和白噪声除外。在进入幅度调制之前,应先在A路连续功能中设置好载波的波形、频率值和幅度值。

按【AM】键, "AM"键盘灯亮, A 路可输出幅度调制信号。

3.5.1 调制深度: 按【Menu】键,选中"Depth"选项,可以设定调制深度 值。调制深度表示在幅度调制过程中,调制波形达到满幅度时载波幅度变化量相对 于幅度设置值的百分比。调制载波包络的最大幅度 Amax、最小幅度 Amin、幅度设 置值 A、调制深度 M,四者之间的关系由下式表示:

 $Amax = (1+M) \times A \div 2.2 \qquad Amin = (1-M) \times A \div 2.2$

由以上两式可以导出调制深度 M=(Amax-Amin)×1.1÷A

如果调制深度为 120%,则 Amax=A, Amin=-0.09A。如果调制深度为 100%,则 Amax=0.909A, Amin=0。如果调制深度为 50%,则 Amax=0.682A, Amin=0.227A。 如果调制深度为 0%,则 Amax=0.455A, Amin=0.455A。也就是说,当调制深度为 0时,载波幅度大约是幅度设置值的一半。

3.5.2 调制频率:按【Menu】键,选中"Mod_f"选项,可以设定调制频率 值。在幅度调制中,调制频率一般远低于载波频率。

3.5.3 调制波形: 按【Menu】键,选中"Shape"选项,可以通过设定波形序 号来设定调制波形。调制波形可以使用波形表中的 14 种波形,脉冲波和白噪声除 外。

3.4.4 调制源:按【Menu】键,选中"Source"选项,可以设定调制源,调制 源只有 0 和 1 两个值。设定为 0 使用内部调制源,设定为 1 使用外部调制源。如果

使用外部调制源,可以从仪器后面板《Modulation In》端口输入调制信号。当外部 调制信号满幅度为±5V时,则调制深度的显示与实际调制深度相符合,否则调制深 度的显示是不正确的。

3.5.5 同步输出:在幅度调制期间,从仪器前面板《Sync》端口输出一个同步 信号,同步信号是一个占空比 50%的 TTL 方波,方波的频率等于调制波的频率,方 波的相位以调制波的相位为参考。

在幅度调制时,再按【AM】键,"AM"键盘灯灭,仪器退出幅度调制功能,返回到连续功能。

3.6 相位调制 (PM)

在相位调制中,载波的相位是随着调制波形的瞬时电压而变化的,载波的波形可以使用波形表中的14种波形,脉冲波和白噪声除外。在进入相位调制之前,应先在A路连续功能中设置好载波的波形,频率值和幅度值。

按【PM】键, "PM"键盘灯亮, A 路可输出相位调制信号。

3.6.1 相位偏差:按【Menu】键,选中"Devia"选项,可以设定相位偏差 值。相位偏差表示在相位调制过程中,调制波形达到满幅度时载波相位的变化量。 在调制波的正满度值,输出信号的相位增加一个相位偏差,在调制波的负满度值, 输出信号的相位减少一个相位偏差。

3.6.2 调制频率:按【Menu】键,选中"Mod_f"选项,可以设定调制频率 值。在相位调制中,调制频率一般远低于载波频率。

3.6.3 调制波形: 按【Menu】键,选中"Shape"选项,可以通过设定波形序 号来设定调制波形。调制波形可以使用波形表中的 14 种波形,脉冲波和白噪声除 外。

3.6.4 调制源:按【Menu】键,选中"Source"选项,可以设定调制源,调制 源只有 0 和 1 两个值。设定为 0 使用内部调制源,设定为 1 使用外部调制源。如果 使用外部调制源,可以从仪器后面板《Modulation In》端口输入调制信号。当外部 调制信号满幅度为±5V 时,则相位偏差的显示与实际相位偏差相符合。否则相位偏 差的显示是不正确的。

3.6.5 同步输出: 在相位调制期间,从仪器前面板《Sync》端口输出一个同步

信号,同步信号是一个占空比 50%的 TTL 方波,方波的频率等于调制波的频率,方 波的相位以调制波的相位为参考。

在相位调制时,再按【PM】键,"PM"键盘灯灭,仪器退出相位调制功能,返回到连续功能。

3.7 脉宽调制 (PWM)

在 PWM 调制中,载波的脉冲宽度是随着调制波形的瞬时电压而变化的,载波的 波形只能使用脉冲波形。在进入脉宽调制之前,应先在 A 路连续功能中设置好载波 的频率值和幅度值。

按【PWM】键, "PWM"键盘灯亮, A 路可输出脉宽调制信号, 载波的波形自动 设置为脉冲波。

3.7.1 脉宽偏差:按【Menu】键,选中"Devia"选项,可以设定脉宽偏差 值。脉宽偏差表示在脉宽调制过程中,调制波形达到满幅度时载波脉宽相对于载波 周期的变化量,也就是占空比的变化量。如果将已调制载波的最大占空比称为 Dmax, 最小占空比称为 Dmin,则脉宽偏差用下式表示:

脉宽偏差=Dmax-Dmin

如果 Dmax=80%, Dmin=20%, 则脉宽偏差为 60%。如果 Dmax=50%, Dmin=50%, 则脉宽偏差为 0%。也就是说, 当脉宽偏差为 0 时, 脉冲波占空比为 50%。

3.7.2 调制频率: 按【Menu】键,选中"Mod_f"选项,可以设定调制频率 值。

3.7.3 调制波形: 按【Menu】键,选中"Shape"选项,可以通过设定波形序 号来设定调制波形。调制波形可以使用波形表中的 14 种波形,脉冲波和白噪声除 外。

3.7.4 调制源: 按【Menu】键,选中"Source"选项,可以设定调制源,调制 源只有 0 和 1 两个值。设定为 0 使用内部调制源,设定为 1 使用外部调制源。如果 使用外部调制源,可以从仪器后面板《Modulation In》端口输入调制信号。当外部 调制信号满幅度为±5V 时,则脉宽偏差的显示与实际脉宽偏差相符合。否则脉宽偏 差的显示是不正确的。

3.7.5 同步输出: 在 PWM 期间,从仪器前面板《Sync》端口输出一个同步信

号,同步信号是一个占空比 50%的 TTL 方波,方波的频率等于调制波的频率,方波的相位以调制波的相位为参考。

在脉宽调制时,再按【PWM】键,"PWM"键盘灯灭,仪器退出脉宽调制功能,返回到连续功能。

3.8 频移键控(FSK)

在频移键控调制中,载波的频率在"载波频率"和"跳变频率"两个频率间交 替跳变,跳变的速度由跳变速率确定。载波的波形可以使用波形表中的14种波形, 脉冲波和白噪声除外。在进入频率调制之前,应先在 A 路连续功能中设置好载波的 波形、频率值和幅度值。

按【FSK】键, "FSK"键盘灯亮, A 路可输出频移键控信号。

3.8.1 跳变频率:按【Menu】键,使"Hop_f"字符灯亮,可以设定跳变频率 值。频移键控与调制波形为方波的频率调制相类似。"跳变频率"类似于"频率偏 差",不同的是频率偏差是在载波频率基础上加减的一个偏移量,其设置范围与载 波频率有关,而跳变频率可以在全部频率范围内任意设定,和载波频率没有关系。

3.8.2 跳变速率:按【Menu】键,使"Rate"字符灯亮,可以设定跳变速率 值。在频移键控调制中,调制波形固定为占空比 50%的方波,方波的频率即为跳变 速率。

3.8.3 触发源:按【Menu】键,选中"Source"选项,可以设定触发源,触发 源只有 0 和 1 两个值。设定为 0 使用内部触发源,设定为 1 使用外部触发源。如果 使用外部触发源,可以从仪器后面板《Trig In》端口输入 TTL 触发信号。当触发信 号为逻辑低电平时,输出信号的频率为载波频率;当触发信号为逻辑高电平时,输 出信号的频率为跳变频率。在使用外部触发源时,跳变速率的设置被忽略。

3.8.4 同步输出: 在频移键控期间,从仪器前面板《Sync》端口输出一个同步 信号,同步信号是一个占空比 50%的 TTL 方波,方波的频率等于跳变速率。当输出 为载波频率时,同步信号为低电平;当输出为跳变频率时,同步信号为高电平。

在频移键控时,再按【FSK】键, "FSK"键盘灯灭,仪器退出频移键控功能,返回到连续功能。

3.9 频率扫描

在频率扫描中,输出频率按照设定的扫描时间从始点频率到终点频率变化。扫描可以在整个频率范围内进行。扫描过程中,输出信号的相位是连续的。频率扫描可以使用波形表中的14种波形,脉冲波和白噪声除外。

频率线性扫描和锯齿波频率调制相类似,不同的是频率扫描不使用调制波形, 而是按照一定的时间间隔连续输出一系列离散的频率点。

按【Sweep】键, "Sweep"键盘灯亮, A 路可输出频率扫描信号。

3.9.1 始点终点频率:按【Menu】键,选中"Start"选项,可以设定始点频率值。按【Menu】键,选中"Stop"选项,可以设定终点频率值。如果终点频率值 大于始点频率值,则频率从低到高正向扫描,扫描从始点频率开始步进增加,到达 终点频率后再返回到始点频率。如果终点频率值小于始点频率值,则频率从高到低 反向扫描,扫描从始点频率开始步进减少,到达终点频率后再返回到始点频率。

3.9.2 扫描时间:按【Menu】键,选中"Time"选项,可以设定扫描时间值。 扫描时间值表示从始点频率扫描到达终点频率时所占用的时间。扫描过程中每个频 率点持续的时间是固定不变的,所以扫描时间越长,扫描频率点数就越多,频率步 进量就越小,扫描就越精细。扫描时间越短,扫描频率点数就越少,频率步进量就 越大,扫描就越粗糙。

3.9.3 扫描模式: 按【Menu】键,选中"Mode"选项,可以设定扫描模式。扫描模式只有 0 和 1 两个值,设定为 0 选中"linear"选项,为线性扫描模式。设定为 1 选中"log"选项,为对数扫描模式。

在线性扫描时,频率步进量是固定的。当扫描范围较宽时,固定的频率步进量 会带来不利的影响,会导致在频率的高端扫描分辨率较高,频率变化较慢,扫描很 细致。但在频率的低端扫描分辨率较低,频率变化很快,扫描很粗糙。因此,线性 扫描仅适合于扫描频率范围较窄的场合。

在对数扫描时,频率步进量不是固定的,而是按对数关系变化。在频率的高端,频率步进量较大,在频率的低端,频率步进量较小。在较宽的频率扫描范围内,频率的变化是相对均匀的。对数扫描适合于扫描频率范围较宽的场合。

3.9.4 触发源:按【Menu】键,选中"Source"选项,可以设定触发源,触发源只有 0 和 1 两个值。设定为 0 使用内部触发源,设定为 1 使用外部触发源。如果使用外部触发源,扫描到达终点后停止,然后每按一次【Shift】【trig】键,扫

描过程只运行一次,然后停止在始点频率上,等待下一次触发。也可以使用外部触发信号,从仪器后面板《Trig In》端口输入 TTL 触发信号。每一个触发信号的上升沿,扫描过程运行一次。当然,触发信号的周期值应该大于扫描时间值。

3.9.5 同步输出: 在频率扫描期间,前面板《Sync》端口可以输出一个同步信号。同步信号是一个 TTL 电平的脉冲波信号,脉冲的上升沿对应在扫描的起始点,脉冲的下降沿对应在扫描区间的中点,脉冲波的周期和扫描时间相同。

在频率扫描时,再按【Sweep】键,"Sweep"键盘灯灭,仪器退出频率扫描功能,返回到连续功能。

3.10 脉冲串

首先说明,在脉冲串功能中,"脉冲"一词,并不是指通常所说的脉冲波形, 而是泛指任何波形的一个周期。在脉冲串输出中,仪器按照设定的重复周期,脉冲 计数和起始相位,连续输出一系列脉冲串,或触发输出单个脉冲串。脉冲串波形可 以使用波形表中的14种波形,脉冲波和白噪声除外。在进入脉冲串功能之前,应先 在A路连续功能中设置好脉冲串的波形、频率值和幅度值。

按【Burst】键, "Burst"键盘灯亮, A 路可输出脉冲串信号。

3.10.1 重复周期:按【Menu】键,选中"Period"选项,可以设定重复周期 值。重复周期表示从一个脉冲串开始到下一个脉冲串开始的时间,重复周期必须足 够大,以便能够容纳所设定的脉冲个数,如下式:

重复周期>(脉冲计数/脉冲频率)

如果设定的重复周期值过小, 仪器将修改设定值, 将重复周期限制在所允许的 最小值。

3.10.2 脉冲计数: 按【Menu】键,选中"Ncyc"选项,可以设定脉冲计数 值。脉冲计数表示在一个重复周期中脉冲串的周期数,脉冲计数必须足够少,以便 在重复周期中能够容纳得下,如下式:

脉冲计数<(重复周期×脉冲频率)

如果设定的脉冲计数值过大, 仪器将修改设定值, 将脉冲计数限制在所允许的 最大值。

3.10.3 起始相位: 按【Menu】键, 选中"Phase"选项, 可以设定起始相位

值。脉冲串的起始时刻和结束时刻总是处在波形的相同相位上,称为起始相位。起 始相位设置范围0°~360°,起始相位对方波不起作用。

3.10.4 触发源:按【Menu】键,选中"Source"选项,可以设定触发源,触 发源只有 0 和 1 两个值。设定为 0 使用内部触发源,设定为 1 使用外部触发源。如 果使用外部触发源,脉冲串输出停止,然后每按一次【Shift】【trig】键,输出 一个脉冲串,然后保持在起始相位上,等待下一次触发。也可以使用外部触发信 号,从仪器后面板《Trig In》端口输入 TTL 触发信号。每一个触发信号的上升沿, 输出一个脉冲串,然后保持在起始相位上,等待下一次触发。当然,触发信号的周 期应该符合重复周期设置的限定条件。在使用外部触发源时,重复周期的设置被忽 略。

3.10.5 同步输出:在脉冲串输出期间,前面板《Sync》端口可以输出一个同步信号。同步信号是一个 TTL 电平的脉冲波,脉冲上升沿对应在脉冲串的起始点,脉冲下降沿对应在脉冲串的结束点。也就是说,在脉冲串持续期间,同步输出保持高电平;在脉冲串停止期间,同步输出保持低电平。

在脉冲串功能时,再按【Burst】键,"Burst"键盘灯灭,仪器退出脉冲串功能,返回到连续功能。

3.11 任意波形

仪器具有 16 种波形(见波形序号表),其中 0#~10#为内置的固定波形,用户 只能使用而不能对波形进行编辑和修改,11#~15#为用户波形,使用者可以自己编 辑任意波形,也可以对当前波形进行编辑和修改。

3.11.1 键盘编辑: 可以使用仪器键盘对用户波形进行编辑和修改,步骤如下: (1). 选中 A 路连续功能,频率设定 1kHz,幅度设定 20Vpp。

(2). 按上档键【Shift】【Waveform】,选中"#"单位,设定 11#~15#中的 一个波形序号,调出一个用户波形。

(3). 按【Edit】键, "Edit"键盘灯亮,即可以对当前波形进行编辑和修改。

(4). 按【Menu】键,选中"#"单位,可以设定编辑点序号。

(5). 按【Menu】键,选中"。"单位,可以设定水平相位值。水平相位值设置范围 0°~360°,0# 编辑点的水平相位值必须是 0°,中间编辑点的水平相位值必须很 360°。

(6). 按【Menu】键,选中"Vdc"单位,可以设定垂直电压值。垂直电压值设置范围-10V~+10V,如果需要周期连续,则 0°和 360°两个编辑点的垂直电压值应该相等。

(7).从 0# 编辑点开始,使用上述方法可以设置一系列编辑点。仪器能够将这些编辑点使用直线顺序连接,形成一个用户波形。在 A 路输出端口连接示波器,可以实时观察到编辑的效果。一个用户波形最少只需要两个编辑点(例如锯齿波),最多可以达到 800 个编辑点。

(8). 按【Edit】键, "Edit"键盘灯灭,退出波形编辑状态。

(9). 按【Menu】键,选中"Store"选项,使用键盘输入 11#~15#中的一个波 形序号,按【#】键,当前波形即被存储到指定序号的非易失性存储器中,关断电源 也不会丢失。为了防止无意中转动旋钮导致多个波形序号连续存储,在"Store" 选项下只能使用键盘进行存储操作,旋钮功能被封闭。

3.11.2 计算机编辑:使用键盘编辑一个用户波形,可以随意修改,即编即 用。但是只适合编辑点数较少的简单波形,对于编辑点数较多的复杂波形,使用 键盘编辑就很费时间。最好通过波形编辑软件,使用鼠标在计算机屏幕上编辑一 个任意波形,然后再将波形数据下载到仪器中。

(1). 将随机光盘中的波形编辑软件装入到计算机中,使用 USB 连接电缆将仪器与计算机连接起来。打开仪器电源,选中 A 路连续功能。

(2).打开波形编辑软件,显示出任意波形编辑界面,可以使用鼠标编辑一个任意波形。波形编辑完成之后,将波形数据下载到仪器中。如果需要,可对下载的任意波形进行存储,关断电源也不会丢失。

(3). 波形编辑软件的使用方法在随机光盘中另有说明。

3.11.3 波形存储:无论是使用波形编辑软件将用户波形下载到仪器中,还是使用键盘对用户波形进行编辑和修改,用户波形数据都暂时存储在易失性存储器中,关断电源就丢失了。如果想长期保存波形,必须进行存储。但是需要注意,存储一个新的波形,会将该波形序号的原有波形数据覆盖掉,因此存储操作应该 谨慎进行。

3.11.4 波形调出:用户波形存储以后,按上档键【Shift】【Waveform】, 设定波形序号,即可以调出该序号的用户波形。

3.12 设置参数存储

仪器在使用中可以设置各种工作参数,例如波形、频率、幅度等,本仪器可以 设置的参数多达 40 多项,统称为仪器的设置参数。

3.12.1 设置参数存储:本仪器有 6 个非易失性存储区,可以分别存储 6 组设置参数,关断电源也不会丢失。其中 0# 存储区存储了默认设置参数,为了保护默认设置参数不被破坏,0#存储区不能进行存储操作。1#~5#存储区可以存储用户设置参数。其中 1# 存储区为上电设置参数,用户可以把自己常用的设置参数存储在 1# 存储区,开通电源或系统复位时自动调出。

在 A 路连续功能时,按【Menu】键,选中"Store"选项,使用键盘输入 1#~ 5#中的一个存储区号,按【#】键,仪器当前的设置参数即被存储到指定存储区号的 非易失性存储区,关断电源也不会丢失。存储一组新的设置参数,会将该存储区号 的原有数据覆盖掉,为了防止无意中转动旋钮导致多个存储区号连续存储,在 "Store"选项下只能使用键盘进行存储操作,旋钮功能被封闭。

3.12.2 设置参数调出:设置参数存储以后,在 A 路连续功能时,按【Menu】 键,选中"Recall"选项,设定 0#~5#中的一个存储区号,按【#】键,即可以调 出该存储区号的设置参数。设置参数调出以后,仪器随即使用新的设置参数进行工 作。

3.13 外部存储器

仪器可以使用U盘作为外部存储器,将U盘插入仪器后面板上的《USB Host》 端口中,显示屏左下角会显示"USB"标志。U盘拔出以后,显示屏左下角的 "USB"标志消失。无论是对用户波形还是对设置参数,在进行存储与调出操作时, 都是采用U盘优先的原则。如果仪器插入了U盘,则存储与调出在U盘中进行,如 果仪器没有插入U盘,则存储与调出在仪器内部非易失性存储器中进行。

如果使用U盘存储用户波形,仪器根据波形序号自动在U盘中创建相应的文件 名 WAVE11. ARB~WAVE15. ARB,然后将用户波形数据存储到相应的文件中。如果使 用U盘存储设置参数,仪器根据存储区号自动在U盘中创建相应的文件名 SETUP1. SET~SETUP5. SET,然后将设置数据存储到相应的文件中。如果U盘存储操 作失败,则有报警声音。在对U盘进行调出操作时,仪器根据输入的用户波形序号 或设置参数存储区号,在 U 盘中寻找匹配的文件名,如果能找到,则调出该文件的 数据,如果 U 盘中没有相匹配的文件名,则调出失败,有声音报警。

使用U盘存储器,可以保存和调出个性化的用户波形和设置参数,给多个用户 使用同一台仪器提供了方便。

3.14 频率测量

本仪器附加有一个脉冲计数器,可以测量信号的频率,它和函数/任意波形发生器没有任何关系,只是给仪器增加了一种使用功能。

将外部被测信号连接到后面板《Count In》端口,按【Count】键, "Count" 键盘灯亮,显示屏右下角出现闪动的"Gate"标志,仪器开始对输入信号的频率进 行测量,并显示出频率测量值。

3.14.1 **闻门时间设定:** 按【Menu】键,选中"Gate"选项,频率测量停止, 可以设定闻门时间值。闻门时间设置完成以后,频率测量重新开始,"Gate"标志 闪动的速率也会改变。闻门时间表示对被测信号的采样间隔时间,闻门时间越长, 采样数据越多,测量结果就越稳定,测量分辨率也越高。闻门时间越短,对被测信 号变化的跟踪性能就越好,但是会降低测量分辨率。一般来说,闻门时间应该大于 被测信号的周期时间。

3.14.2 耦合方式: 被测信号使用交流耦合方式,当频率较低时输入衰减也较大,所以当频率小于 10Hz 时,应适当增加被测信号的幅度。

3.14.3 低通滤波器: 当被测信号的频率较低并且迭加有高频噪声时,高频噪声可能会触发计数器,使得测量结果比正确值要大。这时应该外加低通滤波器,将 被测信号中的高频噪声过滤掉,以便得到正确的测量结果。

3.15 输出端口

仪器前面板有三个输出端口,输出端口严格禁止用作信号输入,否则,可能会 导致仪器的损坏。

3.15.1 信号输出端口《CHA》: A 通道的各种波形信号都从该端口输出,按 【Output】键,可以循环开通或关闭输出端口的信号。"Output"键盘灯亮时,输 出端口为开通状态; "Output"键盘灯灭时,输出端口为关闭状态。如果不慎将一 个较高电压的信号加到信号输出端口, 仪器将受到"倒灌"的危险, 此时仪器会启动保护功能, 立刻关闭信号输出端口, "Output"键盘灯灭, 并有声音报警。此时必须检查外接负载, 故障排除以后, 才能按【Output】键将信号输出端口开通。

3.15.2 信号输出端口《CHB》: B 通道的各种波形信号都从该端口输出,端口 特性与《CHA》端口相同。

3.15.3 同步输出端口《SYNC》: 同步端口输出 TTL 兼容的脉冲波信号,高电 平大于 4V,低电平小于 0.3V。在不同功能时,同步信号也有所不同。

(1). 在 A 路连续功能时,同步信号是一个 TTL 电平的方波信号,同步信号的频率与《CHA》端口信号的频率相同,当输出模式设定为 0 时,同步信号的相位与

《CHA》端口信号的相位相同。当输出模式设定为 1 时,同步信号的相位与《CHA》 端口信号的相位相反。

(2). 在 B 路连续功能时,同步信号是一个 TTL 电平的方波信号,同步信号的频率与《CHB》端口信号的频率相同,当输出模式设定为 0 时,同步信号的相位与《CHB》端口信号的相位相同。当输出模式设定为 1 时,,同步信号的相位与《CHB》端口信号的相位相反。

(3). 在 FM、AM、PM、PWM 调制时,同步信号是一个占空比 50%的方波,方波的 频率等于调制波的频率,方波的相位以调制波的相位为参考。

(4).在 FSK 时,同步信号是一个占空比 50%的方波,方波的频率等于跳变速率,当输出载波频率时,同步信号为低电平。当输出跳变频率时,同步信号为高电平。

(5). 在频率扫描功能时,同步信号是一个 TTL 电平的脉冲波信号,脉冲波的上 升沿对应在扫描的起始点,脉冲的下降沿对应在扫描区间的中点,脉冲波的周期和 扫描时间相同。

(6). 在脉冲串输出时,同步信号是一个脉冲波,脉冲上升沿对应脉冲串的起始 点,脉冲下降沿对应脉冲串的结束点,同步信号的周期等于脉冲串的重复周期。

(7).在频率扫描、脉冲串和频移键控功能时,如果使用外部触发或手动触发, 则同步信号的频率由触发信号确定。

3.16 输入端口

仪器后面板有三个输入端口,输入端口只能用作外部信号的输入,不能用作信

号输出。

3.16.1 调制输入端口《Modulation In》: 在 FM、AM、PM 和 PWM 调制功能时,输入外部调制信号。

3.16.2 触发输入端口《Trig In》: 在 FSK 调制、频率扫描和脉冲串功能时,输入外部触发信号。

3.16.3 计数输入端口《Count In》: 在频率测量功能时,输入外部被测信号。

3.17 通讯端口

3.17.1 USB 设备端口《USB Device》: 通过 USB 电缆和计算机相连,可以对 仪器进行编程控制,或者使用波形编辑软件下载用户波形数据,还可以使用固件更 新软件对仪器的固件程序进行更新,USB 设备接口的使用方法在随机光盘中有详细 说明。

3.17.2 USB 主机端口《USB Host》: 可以插入U盘,用于对仪器的用户波形和设置参数进行存储和调出。

3.18 参数校准

仪器在出厂时已经进行了校准,但经过长期使用之后,某些技术参数可能会有 较大的变化。为了保证仪器的精度,应该进行定期校准。对于技术参数的校准,并 不需要打开机箱,用户只需通过键盘操作,就可以恢复仪器的精度。

3.18.1 校准开通: 仪器开机以后,校准处于关闭状态,不输入校准密码,不 能进行校准,这样可以有效地保护校准参数,防止被无意中修改。首先选择正弦 波,按上档键【Shift】【Cal】,校准密码显示 0,输入校准密码 1900,按【#】 键,校准开通,然后可以进行校准。如果当前为 A 路连续功能,可以对 A 路进行校 准;如果当前为 B 路连续功能,则对 B 路进行校准。

3.18.2 参数校准:按【Menu】键,左边显示校准值,右边显示校准序号,并 自动设置校准条件。使用键盘或旋钮调整校准值,可以对当前校准项目进行校准, 使输出达到满意的效果。继续按【Menu】键,校准序号逐步增加,这样可以依次校 准全部校准项目,如下表所示。校准过程中,可以随时按上档键【Shift】 【Cal】,再按【Menu】键,使校准序号返回到00。

参数校准表

序号	校准参考值	输出标称值	调整校准值使输出在下列误差范围之内
00	1000	0Vdc	零点校准: 输出直流电压 -20~20mVdc
01	1000	10Vdc	偏移校准: 输出直流电压 9.87~10.13Vdc
02	900	7Vrms	幅度校准: 输出交流电压 6.928~7.072Vrms
03	300	0.71Vrms	幅度校准: 输出交流电压 0.701~0.719Vrms
04	500	1MHz	频率校准:输出频率 1MHz±20Hz
05~**	100~150	5Vpp	平坦度校准: 输出幅度 4.5Vpp~5.1Vpp

** TFG1905A 序号为 05~09, TFG1910A 序号为 05~14, TFG1920A 序号为 05~24

3.18.3 校准关闭:校准完毕,按上档键【Shift】【Cal】,显示 1900,按 任一数字键,再按【#】键,仪器开始存储本次校准参数,等待存储完成之后,校准 关闭,退出校准状态。

校准过程中,如果校准失误,可以随时按【Freq】键,仪器不存储校准参数, 本次校准被取消。

仪器开机后,自动调出并使用最后一次存储的校准参数。

3.19 出厂默认设置

3.19.1 A 路、B 路连续功能: 开机后默认连续功能。

波形:正弦波	频率: 1kHz	幅度: 1Vpp
衰减: Auto	偏移: 0Vdc	占空比: 50%
对称度: 50%	脉冲宽度: 0.2ms	输出模式:同相
输出端口:开通		
3.19.2 调制功能:	(FM, AM, PM, PWM)	
频率偏差: 1kHz	调幅深度: 100%	相位偏差: 180°
脉宽偏差: 50%	调制频率: 1kHz	调制波形:正弦波
调制源: 内部		

 3. 19. 3 频移键控功能:

 跳变频率: 4kHz
 跳变速率: 1kHz
 调制波形: 方波

 触发源: 内部
 3. 19. 4 频率扫描功能:

 幼点频率: 100H
 终点频率: 1kHz
 扫描时间: 3s

 扫描模式: 线性
 触发源: 内部

 3. 19. 5 脉冲串功能:
 重复周期: 10ms
 脉冲计数: 3
 起始相位: 0°

 触发源: 内部
 1000
 1000
 1000

3.20 固件版本号

在 B 路连续功能时,按【Menu】键,可以显示出本机固件版本号: xxxx.xx, 供仪器维修时使用,固件版本号不能设定和修改。

3.21 功率放大器(选件)

功率放大器是一个选购件,如果用户选购了功率放大器,则机箱内会安装一块功率 放大器板,这是一个与仪器无关的独立部件,后面板上的《Amplifer In"》端口为功 放输入端口,后面板上的《Amplifer Out》端口为功放输出端口。

将输入信号连接到功放输入端口,在功放输出端口即可以得到经过功率放大的输 出信号,输入信号可以是本机的输出信号,也可以是其他仪器的输出信号。

3.21.1 输入波形:正弦波,对于其他波形,失真度可能较大。

3.21.2 输入电压: 功率放大器的电压放大倍数为两倍,最大输出幅度为 9Vrms,所以最大输入幅度应限制在 4.5Vrms,超过限制时,输出信号会产生失真。

3.21.3 频率范围: 100Hz~10kHz。

3.21.4 输出功率: 功率放大器的输出功率表达式为

 $P = V^2 / R$

式中: P 为输出功率(单位为 W)

V 为输出幅度有效值(单位为 Vrms)

R 为负载电阻(单位为Ω)

最大输出幅度可以达到 9Vrms,最小负载电阻可以小到 2Ω,但是工作环境温度越高,输出信号的频率越高,输出信号的失真会越大。一般情况下最大输出功率可以达到 10W(8Ω)。

3.21.5 输出保护: 功率放大器具有输出短路保护和过热保护,一般不会损坏,但应尽量避免长时间输出短路。频率、幅度和负载尽量不要用到极限值,特别 是两种参数不能同时用到极限值,以免对功率放大器的性能造成伤害。

第四章 服务与支持

4.1 保修概要

石家庄数英仪器有限公司对生产及销售产品的工艺和材料缺陷,自发货之日起 给予一年的保修期。保修期内,对经证实是有缺陷的产品,本公司将根据保修的详 细规定给于修理或更换。

除本概要和保修单所提供的保证以外,本公司对本产品没有其他任何形式的明 示和暗示的保证。在任何情况下,本公司对直接、间接的或其他继发的任何损失不 承担任何责任。

4.2 联系我们

在使用产品的过程中,若您感到有不便之处,可和石家庄数英仪器有限公司直 接联系:

周一至周五	北京时间 8:00-17:00
营销中心:	0311-83897148 83897149
客服中心:	0311-83897348
传 真:	0311-83897040
技术支持:	0311-83897241/83897242 转 8802/8801
	0311-86014314

或通过电子信箱与我们联系

E-mail: market@suintest.com

网址: http://www.suintest.com

第五章 技术参数(注1)

5.1 A 路 B 路输出特性

5.1.1 波形特性

标准波形:正弦波、方波、锯齿波、脉冲波、噪声、指数函数、对数函数、

SINC 函数、半圆函数、心电图波、振动波

任意波形:5个

5.1.2 正弦波频谱纯度

谐波失真: (1Vpp) ≤-40dBc (≤5MHz)

 ≤ -35 dBc (>5MHz)

总失真度: (20Hz~20kHz, 20Vpp) ≤0.5%

5.1.3 方波、脉冲波、锯齿波特性

方波脉冲波边沿时间: ≤35ns 过冲: ≤ 10 %

方波占空比: 0.1%~99.9% (受边沿时间限制)

脉冲波宽度: 100ns~2000s

锯齿波对称度: 0.0%~100.0%

5.1.4 任意波特性

波形长度: 4096 点

采样速率: 100 MSa/s

幅度分辨率: 10 bits

滤波器带宽: 50MHz

非易失性存储器:5个

5.1.5 频率特性

频率范围:正弦波:1µHz~20MHz(注2)

方波、脉冲波: 1 µ Hz~5MHz

其它波形: 1 µHz~1MHz

频率分辩率: 1 µ Hz, 6 位数字

频率准确度: ±20ppm

5.1.6 幅度特性(自动衰减,偏移 0Vdc)

幅度范围:频率≤8MHz: 0~10Vpp(50Ω负载) 0~20Vpp(开路负载)

频率>8MHz: 0~9Vpp(50 Ω 负载) 0~18Vpp(开路负载)
幅度分辩率: 2mVpp (幅度>2Vpp) 0. 2mVpp (幅度≤2Vpp)
幅度准确度(1kHz, >5mVrms, 自动衰减): ± (设置值×1%+2mVrms)
幅度平坦度(正弦波, 相对于 1MHz, 5Vpp): ±10%
5.1.7 偏移特性(幅度 0Vpp)
偏移范围: ±5Vdc(50 Ω 负载) ±10Vdc(开路负载)
偏移分辨率: 2mVdc

偏移准确度: ±(设置值×1%+20mVdc)

5.1.8 相位特性

输出模式:正向/反向

A B 路相位差: 0°~360° 分辨率: 1°

5.1.9 参数存储特性

非易失存储参数:5组

5.1.10 输出端口

输出阻抗: 50Ω 典型值

输出保护: 过载自动断开输出

5.2 A 路调制特性

5.2.1 FM, AM, PM, PWM 调制

载波波形:正弦波,方波,锯齿波等16种波形(PWM 仅脉冲波)

调制波形:正弦波,方波,锯齿波等16种波形

- 调制频率: 2mHz~20kHz
- 频率偏差: 1 µ Hz~20MHz(注2)
- 调幅深度: 0%~120%
- 相位偏差: 0°~360°
- 脉宽偏差: 0%~99%
- 调制源: 内部/外部

5.2.2 FSK 调制

载波波形:正弦波,方波,锯齿波等16种波形

调制波形:方波 FSK 速率: 1mHz~100kHz 跳变频率:1μHz~20MHz(注2) 触发源:内部/外部

5.3 A 路扫描特性

扫描波形:正弦波,方波,锯齿波等16种波形 扫描范围:始点频率和终点频率任意设定 扫描时间:50ms~500s 扫描模式:线性,对数

触发源: 内部/外部/单次

5.4 A 路脉冲串特性

波形:正弦波,方波,锯齿波等16种波形 重复周期:1μs~500s 脉冲计数:1~1000000 个 起始相位:0°~360° 触发源:内部/外部/单次

5.5 同步输出特性

5.5.1 波形特性: 方波,边沿时间≤20nS

- 5.5.2 电平特性: TTL 兼容
- 5.5.3 **阻抗特性:** 50Ω常规

5.6 调制输入特性

- 5.6.1 输入电压: 5Vpp 满度值
- 5.6.2 输入阻抗: >10kΩ

5.7 触发输入特性

5.7.1 输入电平: TTL 兼容

5.7.2 输入阻抗: >10kΩ

5.8 频率测量特性

5.8.1 输入频率: 1Hz~100MHz

5.8.2 输入幅度: 100mVrms~7Vrms

5.8.3 间门时间: 50ms~5s

5.9 通讯接口

USB 设备接口、USB 主机接口

5.10 通用特性

- **5.10.1 电源条件:** 电压: AC 100~240V 频率: 45~65Hz 功耗: <30VA
- 5.10.2 环境条件: 温度: 0~40℃ 湿度: <80%
- 5.10.3 操作特性: 全部按键操作,旋钮连续调节
- 5.10.4 显示方式: VFD 荧光显示屏
- **5.10.5 机箱尺寸:** 322 mm×256 mm×102 mm 重量: 1.5kg
- 5.10.6 制造工艺: 表面贴装工艺,大规模集成电路,可靠性高,使用寿命长。

5.11 功率放大器(选件)

5.11.1 输入信号: 电压 0Vrms~4.5Vrms 频率 100Hz~10kHz

5.11.2 电压放大: 2 倍

5.11.3 输出功率: 10₩(负载 8Ω)

注1: 技术指标的测试,应该在18℃~28℃环境温度下,开机30分钟后进行。 注2: TFG1905A 正弦波频率范围:1 μHz~5MHz TFG1910A 正弦波频率范围: 1 µ Hz~10MHz TFG1920A 正弦波频率范围: 1 µ Hz~20MHz