序 言

尊敬的用户:

您好! 感谢您选购科电仪器的 HCH-3000E-E 型超声波 测厚仪,为了正确使用本仪器,请您在本仪器使用之前仔细阅 读本说明书全文,特别有关"使用方法"和"注意事项"的部 分。

如果您已经阅读完本说明书全文,建议您将此说明书进行 妥善地保管,与仪器一同放置或者放在您随时可以查阅的地方, 以便在将来的使用过程中进行查阅。

该产品使用说明书在需要时我们会作适当的修改,公司保 留随时改进和革新仪器而不事先通知的权利。

本说明书的著作版权归我公司所有,未经我公司书面许可不得以任何目的、任何手段复印或传播书中的部分或全部内容。

欢迎登录 http://www.kedianyiqi.com 或来电咨询。

日	킆
	<u>x</u>

第一章	概论4
1.1	仪器特点4
1.2	测量原理4
1.3	应用范围4
第二章	仪器参数及功能5
2.1	技术参数5
2.2	主要功能5
第三章	仪器操作8
3.1	仪器准备8
3.2	各部位名称及作用8
	3.2.1 按键功能8
	3.2.2 工作模式显示9
	3.2.3 测量模式显示11
3.3	使用方法12
3.4	菜单操作14
	3.4.1 存储管理15
	3.4.2 探头选择16
	3.4.3 声速18
	3.4.4 打印数据19
	3.4.5 PC 通信21

	3.4.6 测量模式	22
	3.4.7 系统功能	
	3.4.8 仪器信息	
	3.4.9 退出菜单	
3.5	菜单速查	26
第四章	保养和维护	
4.1	保养	
4.2	电源检查	
4.3	维护	
4.4	注意事项	
	4.4.1 一般注意事项	
	4.4.2 测量中注意事项	
第五章	超声波测量技术	
5.1	一般测量方法	29
5.2	超声波测厚示值失真原因分析	29
5.3	超声波测厚示值失真的预防措施及注意事项	
附一位	义器及附件	34
附二 柞	材料声速表	35

第一章 概论

1.1 仪器特点

HCH-3000E-E采用了单片机与CPLD综合技术,集发射-回波模式与回波-回波模式于一身的超声波测厚仪。具有功耗 低、穿透力强、示值稳定、人性化的操作界面等特点。其新增 加的功能包括:分批组管理数据、多种测量模式、声速测量等, 使仪器更加适合工业现场的工作需求。

1.2 测量原理

当探头发射的超声波脉冲通过被测物体到达材料分界面 时,脉冲被反射回探头,通过精确测量超声波在材料中传播的 时间来确定被测材料的厚度。它可以对各种材料的板材和加工 零件作精确测量;可以对生产设备中各种管道和压力容器进行 监测,检测它们在使用过程中受腐蚀后的减薄程度。也可以在 不去除所涂油漆层的情况下,准确的测量板材厚度。

1.3 应用范围

超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量 的,主要用于测量硬质材料的厚度,如:钢铁、不锈钢、铝、 铜、铬合金等金属材料,及塑料、橡胶、陶瓷、玻璃等非金属。 该仪器广泛应用于石油、化工、电力、锅炉、冶金、造船、航 空、航天等各个领域。

4

第二章 仪器参数及功能

2.1 技术参数

- 1、测量范围:发射-回波模式,0.8—500mm(根据具体探头); 回波-回波模式,3.3—20mm(E-E10探头)。
- 2、声速范围: 1000~9999m/s
- 3、显示位数: 四位数字
- 4、示值精度: 0.1mm (测量大于100mm); 0.01mm (测量小于100mm)。
- 5、测量误差:H<10mm, ±0.05; H≥10mm, ±(0.01+H/200)。(H为测量厚度 值)
- 6、使用环境:温度:-10℃~60℃;相对湿度小于90%。
- 7、测量方式:手动存储测量
- 8、存储容量:分为6组,每组100个测量点,共有600个测量 点
- 9、外形尺寸: 146mm*81mm*30mm
- 10、重量:约300g(含电池)
- 11、电源:两节五号 (AA) 电池
- 12、可选探头: PT-08、PT-06、PT-04、PT-10、 ZT-12、GT-12、E-E10。

2.2 主要功能

- 1、工作模式及量程:
 - a、发射-回波模式:标准测量,用于普通的厚度测量。

通过选择不同种类的探头,HCH-3000E-E 最薄可测量 0.8mm,最高上限可达 500mm。

b、回波-回波模式:能够穿透涂层直接对基体测厚,无 需耗费时间和费用去除涂层后再测量;测厚范围:3.3 —20mm。

- 2、数据管理:通过分组的方式来管理存储的数据。一共分
 6组,每组包含100个数据。可以对任意一组数据进行
 查看、删除、打印以及与电脑进行通信操作。
- 3、测量模式:包括常规测量、最小值扫描、监控测量和扫描测量四类测量模式。可以在不同的工作现场下给用户提供不同的使用方式,以解决现场的需求。简述如下: a、常规测量

方便用户单次测量,每一次循环测量结束,蜂鸣器响一下,提示用户当前测量结束。

b、最小值扫描

该模式为快速测量模式。测量数据时, 仪器会自动捕捉 到最小的测量值。如果工厂验收以样品的最小厚度值为 检验标准的话, 那么这种测量模式是较好的选择。

c、监控测量

在这种模式下用户可以通过设置报警上限值和报警下限 值来实时监控工件的厚度是否合格,测量数据一旦超出 上下界限,仪器就会显示超限提示符号,并闪烁所测厚 度值并伴有蜂鸣声来提示用户。同时,用户还可以进行 基数设置,来预定一个标准值,进而时刻监控测量值与 标准值的偏差。 d、扫描测量

该模式为快速测量模式,屏幕右上角有"SCAN"提示符。只要探头耦合,仪器会连续快速测量。

- 4、声速
 - a、通过手动调整的方式来调整不同的声速来适应不同 的测量材料。
 - b、仪器本身内置了10种不同材料的声速,用户可根据 现场材料选择。若需要细微调整,可进入手动调整 中修改。
 - c、仪器还具有反测声速的功能,若工作人员不知所测材 料的声速,该功能会提供方便。
- 5、关机:具有自动关机和手动关机两种方式。
- 6、背光:背光开、背光关、自动背光三种方式供用户选择。
- 7、仪器信息:可以查看仪器的软件版本、探头信息以及厂 商信息。
- 8、系统初始化:由于误操作或者其他外界原因造成仪器系 统紊乱时,允许用户恢复到出厂时的状态。
- 9、欠电指示:在仪器屏幕左上角的位置,显示 " □ "表示电池电压欠电,需要及时更换电池以免影响使用;显示 " □ 表示电池电压正常。

特别提示: 仪器中内置已知声速的10种材料分别是: 钢、铁、 铸铁、铜、铝、铅、铬、锡、玻璃、不锈钢

第三章 仪器操作

3.1 仪器准备

新购仪器请参照"附一 仪器及附件",查看相关的附件是 否齐全,不全时请及时与厂家联系;若仪器损坏,请勿使用, 并尽快与厂家联系。

3.2 各部位名称及作用

3.2.1 按键功能

A、" 😃 "键:a、电源开关键。实现仪器的开启和关闭;

KODIN

科电检测仪器有限公司 KEDIAN INSTRUMENT CO., LTD.

- b、停止键。PC 通讯,打印数据中,停止 通讯打印。
- B、"MENU"键: a、菜单键。进入主菜单;
 - b、位切换键。在声速设置、上下限设置 等需要手动调整的功能中,用此键实 现位与位之间的切换。
- C、"个"、">"键: a、调整键。可以通过该键来完成 菜单的上下选择或者数据的加减设 置。"个"为增加键,">"为减少键。 b、清除键。在最小值捕捉模式下,
 - 按下"^",清除捕捉到的最小值。
- D、"CAL"键: a、校准键。在测量标准试块时,按下"CAL", 进行校准;
 - b、清除键。在查看数据中,清除当前数 据。
 - C、复位声速键。在手动调整声速界面下, 按下此键,声速被复位成 5900m/s。
- E、"ENTER"键: a、确认键。确认当前所选的功能;
 - b、存储键。在测量界面下,存储当前厚 度值。
- 3.2.2 工作模式显示
- a、发射-回波工作模式界面 (如图2)

b、回波-回波工作模式界面 (如图3)

3.2.3 测量模式显示

a、常规测量 (如图4)

b、最小值扫描 (如图 5)

c、监控测量 (如图6)

d、扫描测量 (如图7)

3.3 使用方法

1、开机前准备:打开电池仓,按照机壳后面的正负极指示装 入两节 1.5v 电池,压好电池仓盖。根据需要选择探头,插入探 头插座内。

2、开机:按", "键, 仪器开机。屏幕上会提示"请检查探头", 进入手动选择探头界面。这时用户应该插入探头, 再选择探头 型号, 然后进入测量界面。若用户不插探头, 就选择探头, 这 时屏幕就会提示用户检查探头, 然后返回测量界面, 等待用户 插入探头!

3、校准: HCH-3000E-E 有快捷校准和系统校准两种校准方 式。快捷校准是在发射-回波工作模式和扫描测量模式下,测量 仪器下方的标准试块。屏幕应该显示 4.00,若是其它数字,则 在测量试块的同时按下"CAL",直到数字变成 4.00 即可完成 校准。(注:英制显示为 0.157inc)。校准后,测量中仍然存 在的很小的误差为系统误差,这个可以通过系统校准来消除。 系统校准必须在发射-回波工作模式和扫描测量模式下进行。若 用户在系统校准时没有切换到这两种模式下,仪器将自动进行 切换。

系统校准具体操作:首先切换到发射-回波工作模式和扫描 测量模式,然后选择"系统功能"菜单下的"系统校准",这时 直接返回到测量界面,屏幕上显示"CAL"提示符。测量仪器 下方的标准试块,屏幕应该显示4.00。若是其它数字,则在测 量试块的同时按下"CAL"键,显示数字变成4.00,"CAL"提 示符消失,校准过程完成(注:英制显示为0.157inc)。

4、测量:

发射-回波模式

a、若被测物表面整洁,使用耦合剂,将探头平稳地、垂 直的放在被测物表面,屏幕上显示的数值即为被测物的厚度。 b、若被测物表面粗糙或锈蚀严重,可利用除锈剂、钢丝刷或 砂纸处理被测体表面,在其表面使用耦合剂,在同一点附近多 次测量。c、管壁测量法:测量管壁时应将隔声层 1 垂直于管 道 2 方向放置探头,略为转动探头,此时测量显示的最小厚 度值为实际厚度

值,如图10所示:

回波-回波

该模式可以 隔着涂层检测厚

图10

度。具体测量方法跟发射-回波模式下一样,只是无需耗费时间 和费用去除涂层后再测量。该模式必须使用专用探头,其他探 头不支持此功能!

5、在测量状态下存储

在测量状态下屏幕显示为最新测量值,如需存储按动仪器上面的"ENTER"键,存储地址号自动加1。例如当前待存储地址为第2组第6个,测量值为10.00mm,按"ENTER"键存储后地址变为 No06,显示界面如图示。此 No05 内存储的内容即是10.00 mm。

屏显结果只能被存储一次,如需另外存储可重新测量。当 一组数据存满之后,仪器会自动进入下一组存储空间进行存储。 可以进入"查看数据"菜单,查看存储的数据。

3.4 菜单操作

HCH-3000E-E 共包括九项主菜单, 其中八项是功能菜单。

按"MENU"键进入主菜单界面,选择相应子菜单后,按 "ENTER"键确定进入。可以通过选择不同的菜单或者设置相 应的操作,来实现特定的功能。

3.4.1 存储管理

本仪器按批组方式来管理数据。一共分6组,每组都可存储 100 个数据。在该菜单下用户可根据自己的需要来选择组号和数据号作为目标存储地址或者查看测量数据。也可以删除某一个数据,或某一组数据,或者全部的数据。

(1)查看当前组

进入该菜单后,会依次显示当前存储的三个数据(如图 11);通过"**个**"、"**>**"键可以选择不同的数据。当选中某 一个数据后,可以按"CAL"键来删除该数据。按"ENTER" 键将退出至测量界面。

(2) 删除当前组

进入该菜单后,会提示用户是否删除。选择"确认"后, 按"ENTER"键将删除当前组的全部数据,共100个数据。如 图 12

15

HCH-3000E-E 使用手册

(3) 删除全部数据

进入该菜单后, 会提示用户是 否删除。选择"确认"后, 按

"ENTER"键将删除仪器内部所有存储组中的全部数据。

(4) 选择组号

进入该菜单后,会显示当前存储数据所在的数据组号。通过"**个**"、"**丫**"键可以选择组号,作为当前测量数据的目标存储组,以便实现分组管理数据。查看不同组中存储的数据,

也是通过该菜单选择来实现的。 按"ENTER"键后,将退出至测量 界面。 如图 13

(5) 选择数据号

进入该菜单后,会显示当前 数据所在本组的存储位置。通过 "个"、"`V"键可以更改相应 的数据号,作为当前测量数据的 目标存储位置,或者作为查看数 据的起始位置。按"ENTER"键 后,将退出至测量界面。如图 14 (6)返回

将返回到主菜单。

3.4.2 探头选择

该功能允许用户手动选择探头型号。本机支持6种常见探

图13

头和一种专用探头。

型号	频率	测量范围	温度
PT-08	5.0MHz	0.8—230mm	-10 ~ +60°C
PT-06	7.5MHz	1.5—130mm	-10 ~ +60°C
PT-04	10MHz	1.5—40mm	-10 ~ +60°C
PT-10	5MHz	1.0—250mm	-10 ~ +60°C
GT-12	3MHz	1.5—300mm	-12 ~ +450°C
ZT-12	2MHz	3—500mm	-10 ~ +60°C
E-E10	5.0MHz	1.2—300mm(T-E)	-12 ~ +60°C
		3.3—20mm(E-E)	

根据实测体的厚度及形状来选择探头:

PT-08:常规探头,多种情况下均可选择此探头,主要用 于测量表面为平面或者有较大弧度的物体。

- PT-06: 主要用于测量薄壁以及小弧面的物体。
- PT-04: 主要用于测量凹坑或者表面较小的物体。
- PT-10:测厚探头:主要用于测量表面为平面厚度值较大的材料;以及表面积较大的平板材料。
- GT-12: 用于测量物体温度低于 450℃ 的场合, 测量时探 头与被测高温物体的**接触时间不得大于 5S**。
- ZT-12: 主要用来测量铸铁等粗晶材质的物体,以及面积 较大的平板材料。
- E-E10:回波到回波的专用探头

3.4.3 声谏

用户诵讨该功能可获取实际测 量中需要的声速。

(1) 手动调整

手动调整(m/s) MENU:切换 ENTER: 确认 图15

讲入该菜单后,用户可一位一 位地调节,得到从0000~9999之间的任意声速。如图15

"MENU"键实现位与位之间的切换。"个"、"V"调节 每位数值的大小。"CAL"键, 声速 被复位成 5900m/s。"ENTER" 键 保存声速,退出至测量界面。

(2) 材料洗择

为方便用户,HCH-3000E-E 内置 10 种常见材料的声速。 如图 16

(3) 声谏测量

在实际测量中,用户可能不知 所测材料的声速。通过该功能,利 用该材料已知厚度的试块,可测量 出它的声速。先用游标卡尺或千分 尺测量该试块,读数保留一位小数。 如图 17 所示输入试块的厚度,

"ENTER" 键确认。这时用探头测 量该试块,屏幕上显示出这种材料 的声速。如图18

	材料 (m/s))
钢	5900	◀
铁	5930	
铸铁	4400-5820	
图16		

ENTER: 退出

图18

"ENTER"键退出,这时系统会提示是否将该声速设置成 当前声速。"确认"当前声速被修改;"取消"返回菜单。

3.4.4 打印数据

该功能可打印存储的测量数据。

(1) 打印前的准备

首先把打印机准备好,把打印机插好连线,装入打印纸, 接上电源。此时红灯绿灯都亮,若是绿灯没有亮,则按动打印 机上的"SEL"键,绿灯亮起说明打印机已准备好。把打印机连 线另一头插入仪器"USB"接口,然后在打印菜单下选择相应的 打印选项来实现打印操作。

(2) 打印当前组

进入该菜单后,将打印当前组内 的 100 个数据,打印过程中,可以 通过"**心**"键来停止打印。如图 19。 接着仪器会显示"继续打印"、"返回" 两项选项。选择"继续打印"将会从 暂停处继续往下打印,选择"返回", 将返回到菜单。如图 20

(3) 打印全部数据

操作方法同打印当前组,只是 选择该选项将打印仪器内存储的全 部6组数据。

(4) 选择组号

用来选择,打印哪一组数据。通过"**个**"、"**``**"键来选择, "ENTER"键确认退出。

(5) 返回

选择"返回",将返回到上级菜单中。 打印的数据如下图所示:

- 年月日
- Fil: 02
- 00: 10.24mm
- 01: 7.32mm
- 02: 3.29mm
- 03: 10.28mm
- 04: 0.00mm
- 05: 0.00mm
- 06: 0.00mm
- 07: 0.00mm

.....

3.4.5 PC 通信

该功能是用来与电脑通信,把测量中存储的数据传送到电脑中,以便以后对存储的数据进行处理、分析。与电脑通信时可以按组传送,也可以传送全部数据。

(1) 通信前的准备

首先把通信连线的一头接到电脑串口,另一头插入仪器 "USB"接口。打开通讯软件,把软件上的"打开串口"打开,其 它设置都是默认设置。然后在仪器的"PC通信"菜单下选择 相应的选项来实现与电脑通信的操作。

通信软件的默认设置为:波特率:2400;数据位:8;停止位:1;校验位:None;流控制:None。用户不要随意改变通讯设置,否则会造成数据传送显示乱码或者无法传送数据的现象。

(2) 通信当前组

进入该菜单后,将通信当前组 内的 100 个数据,通信过程中,可 以通过"**心**"键来停止打印。如图 21。接着仪器会显示"继续通信"、 "返回"两项选项。选择"继续通 信"将会从暂停处继续往下传送, 选择"返回",将返回菜单。如图 22。

(3) 通信全部数据

图22

操作方法同通信当前组,只是 选择该选项将传送仪器内存储的全部 6 组数据到 PC 中。

(4) 选择组号

用来选择,传送哪一组数据到电脑中。通过"**个**"、"**`**" 键选择,"ENTER"键确认退出。

通信的数据如下图所示:

Fil: 06

00: 0.00mm 01: 0.00mm 02: 0.00mm 03: 0.00mm

04: 0.00mm 05: 0.00mm 06: 0.00mm 07: 0.00mm

08: 0.00mm 09: 0.00mm 10: 0.00mm 11: 0.00mm

12: 0.00mm 13: 0.00mm

3.4.6 测量模式

不同的工作模式是为了适应不同工作现场的需要。

(1) 常规测量

选中"常规测量"选项,按"ENTER"键后即可开启常规测 量模式。

在这种模式下,方便用户单次测量,每一次循环测量结束, 蜂鸣器响一下,提示用户当前测量结束。

(2) 最小值扫描

选中"最小值扫描"选项,按"ENTER"键后即可开启最小 值捕捉测量模式。

在这种模式下,测量界面的右上角会显示最小值捕捉提示

符"Min"。测量数据时, 仪器会自动捕捉到最小测量值, 并显示出来。如图^{Min 320.2}。如果用户想清除当前捕捉到的最小值, 并重新开始捕捉, 按下"**个**"即可。这种测量模式能够满足曲面或者需要选择最小值的测量环境。适用于测量管壁厚度。

(3) 监控模式

在这种模式下用户可以通过设置报警上下限值来实时监控 工件厚度是否合格,测量数据一旦超出上下界限,仪器就会显 示超限符号,并闪烁显示测量的数据来提示用户。同时,用户 还可以进行基数设置,来预定一个标准值,进而时刻监控测量 值与标准值的偏差。下面介绍一下具体的操作方法。

a、上限设置

进入该选项可以通过"MENU"键实现位与位之间的切换, "个"、"V"调节每位数值的大小,调整完成后按"ENTER" 键返回到上级菜单,报警上值即设置完成。

b、下限设置

进入该选项可以通过"MENU"键实现位与位之间的切换, "个"、"~"调节每位数值的大小,调整完成后按"ENTER" 键返回到上级菜单,报警下限值即设置完成。

c、基数设置

进入该选项后, "MENU"键实现位与位之间的切换, "个"、"~"调节每位数值的大小, 调整完成后按 "ENTER" 键返回到上级菜单, 基数值即设置完成。

d、开启

选中"开启"选项,按"ENTER"键即可开启监控测量模式。

测量数据时, 仪器会在功能栏内显示用户设置的上限值、 下限值、基准值以及测量数据与基准值的偏差值。如图 4 所示。 当测量值高于报警上限时,将在测量值的前面显示"<"符号, 闪烁测量值;测量值低于报警下限时,将在测量值前面显示">" 符号,闪烁测量值。功能栏内基准值的上方会显示出测量值与 基准值的偏差值,大于基准值时显示+A,小于基准值时显示 -A。A 代表测量值与基准值的差值。例如+7.30 表示测量值比 基准值大了 7.3mm。

e、关闭

选中"关闭"选项,按"ENTER"键后即可关闭监控测量模式,并自动进入到常规测量模式。

(4) 扫描测量

该模式为快速测量模式,屏幕右上角有"SCAN"提示符。 只要探头耦合,仪器会连续快速测量。

3.4.7 系统功能

系统功能设置包括:单位制 式、背光设置、关机方式设置以 及还原出厂设置。

(1) 单位制式

该功能实现公制(mm)与 英制 (inc) 之间的转换。 如图 23

(2) 背光设置

单位制式 公制(mm) 英制(inc) ENTER:确认 图23

用户可以选择开启背光,使仪器工作在背光常开的状态下, 适合光线较暗的工作场合。在光线较好时也可以选择关闭背光,

这样设置可以极大的提升电池的使用寿命。用户也可以选择自动背光,让仪器在使用时自动打开背光,无操作时则自动关闭 背光。如图 24。

图24

(3) 关机方式

可以根据用户需要选择自动关机和手动关机。在自动关机 模式下,超过6分钟无操作,仪器会自动关机。

(4) 还原出厂设置

当仪器遇到周围强磁场的干扰,或者一些不当操作时,可 能会造成仪器的参数紊乱,此时可以选择"还原出厂设置"选 项。

具体方法:

选中"还原出厂设置"选项, 按"ENTER"键进入,仪器提示 是否恢复出厂设置,选择"确认" 后,仪器开始还原出厂设置。如图 25。

注意:一般情况下不要随意恢复出厂设置,否则会给用户

带来不必要的麻烦。恢复出厂设置后,仪器所有的设置都将还 原到出厂时的状态,用户存储的数据也全部被删除。

3.4.8 仪器信息

通过"仪器信息"选项,用户可以了解所购买仪器的基本 信息。例如仪器的版本信息,这方便工厂给用户提供跟踪服务。 也可以查看厂商信息,以便客户有问题可以及时与我公司联系。 此外还能查看到仪器所配置探头的具体信息,以便用户更加了 解仪器的工作性能。

3.4.9 退出菜单

选择"退出菜单"选项,用户将退出菜单模式,进入到测量界面。

3.5 菜单速查

第四章 保养和维护

4.1 保养

请用带水或温和清洁剂的软湿布擦拭仪器及部件。

小心:请不要用有机溶剂擦拭,更不能用金属刷或其他工 具清洁仪器和探头。

4.2 电源检查

电源电压低时,仪器显示低电压符号,此时应及时按要求 更换电池,以免影响精度。背光不能长时间打开,以免过快的 消耗电池电量。

4.3 维护

HCH-3000E-E基本不需要维护。请注意维修只能由科电公司及授权代理商进行。

4.4 注意事项

4.4.1 一般注意事项

避免仪器及探头受到强烈震动;避免将仪器置于过于潮湿的环境中;插拔探头时,应捏住夹板沿轴线用力,不可旋转探头,以免损坏探头电缆芯线。

4.4.2 测量中注意事项

(1) 测量时,只有测量显示符出现并稳定时,才能良好测量。

(2) 若被测体表面存有大量耦合剂时,当探头离开被测体表面时,耦合剂会产生误测,因此测量结束时,应迅速将探头移 开被测体表面。

(3) 若探头磨损,测量会出现示值不稳,应更换探头。

第五章 超声波测量技术

5.1 一般测量方法

1、(1)在一点处用探头进行两次测厚,在两次测量中探 头的分割面要互为90°,取较小值为被测工件厚度值。(2) 30mm多点测量法:当测量值不稳定时,以一个测定点为中心, 在直径约φ30mm的圆内进行多次测量,取最小值为被测工件 厚度值。

2、精确测量法:在规定的测量点周围增加测量数目,厚 度变化用等厚线表示。

3、连续测量法:用单点测量法沿指定路线连续测量,间 隔不大于5mm。

4、网格测量法:在指定区域划上网格,按点测厚记录。 此方法在尿素高压设备、不锈钢衬里腐蚀监测中广泛使用。

5.2 超声波测厚示值失真原因分析

超声波测厚在实际应用中,尤其是在役设备的监测中,如 果出现示值失真,偏离实际厚度的现象,结果造成管线(设备) 隐患存在,就是依据错误的数据更换了管件,造成大量材料浪 费。根据我公司几年来超声波测厚的跟踪使用情况,将示值失 真现象及原因分析如下:

1、无示值显示或示值闪烁不稳定原因分析:这种现象在 现场设备和管道检测中时常出现,经过大量现象和数据分析, 归纳原因如下:

(1)工件表面粗糙度过大,造成探头与接触面耦合效果差, 反射回波低,甚至无法接收到回波信号。在役设备、管道大部 分是表面锈蚀,耦合效果极差。

(2)工件曲率半径太小,尤其是小径管测厚时,因常用探 头表面为平面,与曲面接触为点接触或线接触,声强透射率低 (耦合不好)。

(3) 检测面与底面不平行,声波遇到底面产生散射,探头 无法接受到底波信号。

(4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在 其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的 路径传播,有可能使回波湮没,造成不显示。

(5) 探头接触面有一定磨损。常用测厚探头表面为丙烯树 脂,长期使用会使其表面粗糙度增加,导致灵敏度下降,从而 造成不显示或闪烁。

(6) 被测物背面有大量腐蚀坑。由于被测物另一面有锈斑、 腐蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况 下甚至无读数。

2、示值过大或过小原因分析:在实际检测工作中,经常 碰到测厚仪示值与设计值 (或预期值)相比,明显偏大或偏小, 原因分析如下:

(1) 被测物体 (如管道) 内有沉积物, 当沉积物与工件声

阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。

(2)当材料内部存在缺陷(如夹杂、夹层等)时,显示值 约为公称厚度的70%(此时要用超声波探伤仪进一步进行缺陷 检测)。

(3)温度的影响。一般固体材料中的声速随其温度升高而 降低,有试验数据表明,热态材料每增加100℃,声速下降1%。 对于高温在役设备常常碰到这种情况。

(4) 层叠材料、复合(非均质)材料。要测量未经耦合的 层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而 且不能在复合(非均质)材料中匀速传播。对于由多层材料包 扎制成的设备(像尿素高压设备),测厚时要特别注意,测厚 仪的示值仅表示与探头接触的那层材料厚度。

(5) 耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。实际使用中由于耦合剂使用过多,造成探头离开工件时,仪器示值为耦合剂层厚度值。

(6) 声速选择错误。测量工件前,根据材料种类预置其声 速或根据标准块反测出声速。当用一种材料校正仪器后(常用 试块为钢)又去测量另一,种材料时,将产生错误的结果。

(7) 应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一致时,波动过程中质点振动轨迹受应力干扰,波

的传播方向产生偏离。根据资料表明,一般应力增加,声速缓 慢增加。

(8)金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无明显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随覆盖物厚度不同,误差大小也不同。

5.3 超声波测厚示值失真的预防措施及注意事项

由以上产生示值失真的原因分析,在现场检测中就应采取 相应措施,进行事前积极预防,避免造成事故隐患或不必要的 浪费。为此,根据几年来的跟踪检测经验,归纳总结如下几点, 作为预防超声测厚示值失真的预防措施。

1、正确选用测厚探头

(1)测曲面工件时,采用曲面探头护套或选用小管径专用探头(φ6mm),可较精确的测量管道等曲面材料。

(2) 对于晶粒粗大的铸件和奥氏体不锈钢等,应选用频率 较低的粗晶专用探头 (2MHz)。

(3) 测高温工件时,应选用高温专用探头 (300 - 600℃),切勿使用普通探头。

(4) 探头表面有划伤时,可选用500#砂纸打磨,使其平滑 并保证平行度。如仍不稳定,则考虑更换探头。

2、对被检物表面进行处理。通过砂、磨、挫等方法对表 面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉, 露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合 效果。 3、正确识别材料,选择合适声速。在测量前一定要查清 被测物是哪种材料,正确预置声速。对于高温工件,根据实际 温度,按修正后的声速预置或按常温测量后,将厚度值予以修 正。此步很关键,现场检测中经常因忽视这方面的影响而出错。

4、正确使用耦合剂。首先根据使用情况选择合适的种类, 当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用 在粗糙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。 高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹 均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较 高时,耦合剂应涂在探头上。

5、特殊情况的处理

(1)检测时发现数值明显偏离预期值,应用超声波探伤仪进行辅助判断。当发现背面有腐蚀凹坑时,这个区域测量就得十分小心,可选择变换分割面角度作多次测量。

(2)当测量复合外形的工件(如管子弯头处)时,可采用 〔5.1、1、(1)〕介绍的方法,选较小的数据作为该工件在 测量点处的厚度。

(3) 被测工件的另一表面必须与被测面平行,否则得不到 满意的超声响应,将引起测量误差或根本无读数显示。

(4) 对于层叠材料、复合材料以及内部结构特异的,常见 的应用超声反射原理测量厚度的仪器就不适用。

附一 仪器及附件

1	、HCH-3000E-E主机	1台
2	、探头(E-E10)	1支
3	、耦合剂	1瓶
4	、1.5V电池	2节
5	、使用说明书	1份
6	、保修卡、合格证	1份
7.	、手提箱	1只
可选	配件:	
1.	打印机及通讯打印连线	1套
2	、微机通讯软件	1盘
3	、阶梯试块	1块
4	、高温、铸铁、小管径等探头	

	材料	声速	
		in/µs	m/s
铝	Aluminum	0.250	6340-6400
钢	Steel, common	0.233	5920
不锈钢	Steel, stainless	0.226	5740
黄铜	Brass	0.173	4399
铜	Copper	0.186	4720
铁	Iron	0.233	5930
铸铁	Cast Iron	0.173-0.229	4400-5820
铅	Lead	0.094	2400
尼龙	Nylon	0.105	2680
银	Silver	0.142	3607
金	Gold	0.128	3251
锌	Zinc	0.164	4170
钛	Titanium	0.236	5990
锡	Tin	0.117	2960
丙烯酸(类)树脂		0.109	2760
环氧树脂	Epoxy resin	0.100	2540
迷	Ice	0.157	3988
镍	Nickel	0.222	5639
树脂玻璃	Plexiglass	0.106	2692
陶瓷	Porcelain	0.230	5842
聚氯乙烯	PVC	0.094	2388
石英	Quartz glass	0.222	5639
硫化橡胶	Rubber, vulcanized	0.091	2311
水	Water	0.058	1473