EMCON 200 PTP transparent Ethernet media converter ## Ethernet media converter EMCON 200 is an Ethernet media converter used for connecting optical fiber and twisted pair copper Ethernet networks. Copper-based connections are limited to a certain data transmission rate and distance, whereas optical fiber cables can transmit more data over much longer distances. EMCON 200 can also be used in networks with different fiber optic link speeds and wherever IEEE 1588 precision time protocol (PTP) time synchronization is required. EMCON 200 is also a valuable accessory for OMICRON's CMC and DANEO 400 devices that can provide the power required for EMCON 200 with an Ethernet cable (PoE). ### Main features - > Cut-through forwarding between twisted pair copper and optical fiber networks - > 100BASE-TX to 100BASE-X - > 1000BASE-TX to 1000BASE-X - > PTP transparent clock according to IEEE 1588-2008 for preserving time synchronization - > Link speeds of 100 Mbit/s or 1 Gbit/s (determined by the connected SFP transceiver) - > Power supply with Power over Ethernet (PoE) or USB - > Various fiber types (depending on SFP module) for high flexibility - > Auto-negotiation with link partners - > No frame size limit (jumbo frames support) - > Link fault pass through - > Low power consumption ## Field of application - > Accessory for OMICRON CMC and DANEO 400 test sets for connecting to optical fiber networks (power supply via PoE) - > Standalone device for connecting optical fiber and twisted pair copper networks - > Back-to-back connection with two EMCON 200s for network communication across long distances ## Powering options EMCON 200 is powered either via PoE or via USB: #### PoE – Power over Ethernet In order to power EMCON 200 with PoE, it needs to be connected via an Ethernet cable to a power sourcing equipment (PSE), such as OMICRON's CMC or DANEO 400 devices. If no PSE is available, a PoE injector can be used instead. #### **USB** EMCON 200 can be powered via its Micro-B USB 2.0 port with a common USB charger (e.g., from a mobile phone). Alternatively, a USB cable from a PC or laptop can be used. ### Conversion modes EMCON 200 offers the following two conversion modes: #### PTP mode EMCON 200 works as a PTP transparent clock that preserves PTP time synchronization. It modifies PTP messages as they pass through the media converter. EMCON 200 knows how much time it takes for a packet to pass through the media converter because it knows the packet's residence time. EMCON 200 writes this residence time into the correction field of the PTP packets. ### Direct mode When using direct mode, data is converted directly to the physical layer without adding or removing any information from it. In this mode, EMCON 200 has minimum packet delays, but the delays are different for the two directions (i.e., "fiber to copper" and "copper to fiber"). The asymmetry of the packet delays affects the PTP path delay measurements, and this influences the accuracy of the PTP time synchronization in the network. In special cases where two EMCON 200 media converters are used "back to back", the asymmetry of the direct mode is compensated (see page 4). # Your benefits - > Small and lightweight - > Preserves PTP time synchronization - > Easy plug & play handling with PoE - Supports various fiber types for high flexibility - > Clear device status overview www.omicronenergy.com/EMCON200 # Examples for direct mode (back-to-back) ### **Network TAP** To set up a network TAP to monitor or record network traffic, two EMCON 200 media converters can be used to connect the tapping device (e.g., OMICRON's DANEO 400) to the optical fiber network. The packet asymmetry created by the first media converter ("fiber to copper" connection) is compensated by the second media converter ("copper to fiber" connection). ## Long distance optical fiber connection For data transmissions over long distances, optical fiber cables are used. With EMCON 200 a twisted pair Ethernet network on both ends of the line can be connected to the optical fiber cabling. The packet asymmetry created by the first EMCON 200 is compensated by the second EMCON 200 media converter. ## Accessories and technical data | SFP transceiver | Description | Media | Wave l ength | Distance | Order No. | |-----------------|-------------|-------------|---------------------|------------------|-----------| | | 100BASE-FX | Multi-mode | 1310 nm | 2 km / 1.25 mi. | E1311100 | | | 1000BASE-SX | Multi-mode | 850 nm | 550 m / 0.34 mi. | E0668700 | | | 1000BASE-LX | Single-mode | 1310 nm | 10 km / 6.2 mi. | E0668800 | ## EMCON 200 Ports | | Twisted pair ETH port | 100BASE-TX or 1000BASE-T
Auto-negotiation (100 / 1000 Mbit/s full duplex,
depending on SFP transceiver) | | | |--|------------------------|---|--|--| | | Optical fiber SFP port | 100BASE-X or 1000BASE-X 50/125 or 62.5/125 multi-mode fiber 9/125 single-mode fiber Far end fault indication | | | | Optical liber see port | TOODASE-Y OF TOOODASE-Y | |------------------------|-------------------------------------| | | 50/125 or 62.5/125 multi-mode fiber | | | 9/125 single-mode fiber | | | Far end fault indication | | | Auto-negotiation for 1000Base-X | | USB port | Micro-B USB 2.0 | | | | | | | #### Timing IEEE 1588-2008 Supports E2E and P2P delay mechanism protocol Supports Layer 2 (with/without VLAN), IPv4, and IPv6 transport mechanisms No configuration required Suitable for PTP profiles such as IEC 61850-9-3 or IEEE C37.238-2011 PTP transparent clock Corrects internal latencies and inherent conversion asymmetries Updates PTP correction field for all event messages Enabled in PTP conversion mode Minimal jitter Time stamping resolution: 4 ns Typically ≤ 8 ns in PTP conversion mode PTP conversion mode: Low latency 25467 ns at 100 Mbit/s 2894 ns at 1 Gbit/s Direct conversion mode: 915 ns at 100 Mbit/s 432 ns at 1 Gbit/s | Power supply | | |------------------------------|---| | Power over Ethernet
(PoE) | Class 1 powered device according to IEEE 802.3af | | USB | < 2.5 W with active link depending on SFP transceiver | ### Mechanics Dimensions (W x H x D) 110 mm x 25mm x 50 mm / 4.3 x 1.0 x 2.0 in Weight 128 g / 0.28 **l**b ## **Environmental conditions** Operating temperature -25 °C ... + 50 °C / - 13 °F ... + 122 °F Humidity 5 % ... 95 % relative humidity; no condensation #### Safety standards Europe EN 62368-1 USA UL 62368-1 International IEC 62368-1 | Electromagnetic compatibility | | | | |-------------------------------|---|--|--| | Europe | EN 61326-1; EN 55032 Class B; EN 55024 | | | | USA | 47 CFR 15 class B of FCC | | | | International | IEC 61326-1; CISPR 32 Class B; CISPR 24 | | | We create customer value through ... # — Quality — You can rely on the highest safety and security standards Superior reliability with up to 72 hours burn-in tests before delivery 100% routine testing for all test set components ISO 9001 TÜV & EMAS ISO 14001 OHSAS 18001 Compliance with international standards ## — Innovation — ... a product portfolio tailored to my needs More than 200 developers keep our solutions up-to-date More than 15% of our annual sales is reinvested in research and development Save up to 70% testing time through templates, and automation ## — Support —— 247 Professional technical support at any time Loaner devices help to reduce downtime Cost-effective and straight-forward repair and calibration offices worldwide for local contact and support # — Knowledge —— More than 300 Academy and numerous hands-on trainings per year Frequently OMICRON hosted user meetings, seminars and conferences to thousands of technical papers and application notes Extensive expertise in consulting, testing and diagnostics OMICRON is an international company that works passionately on ideas for making electric power systems safe and reliable. Our pioneering solutions are designed to meet our industry's current and future challenges. We always go the extra mile to empower our customers: we react to their needs, provide extraordinary local support, and share our expertise. Within the OMICRON group, we research and develop innovative technologies for all fields in electric power systems. When it comes to electrical testing for medium- and high-voltage equipment, protection testing, digital substation testing solutions, and cybersecurity solutions, customers all over the world trust in the accuracy, speed, and quality of our user-friendly solutions. Founded in 1984, OMICRON draws on their decades of profound expertise in the field of electric power engineering. A dedicated team of more than 900 employees provides solutions with 24/7 support at 25 locations worldwide and serves customers in more than 160 countries. For more information, additional literature, and detailed contact information of our worldwide offices please visit our website.