

Current Transducer LF 505-S/SP22

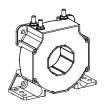
For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

Electrical data

$I_{\rm PN}$	Primary nominal RMS current		500 (6	630/10 sec) A
I_{PM}	Primary current, measuring range @	① ±24 V	0 ±	1200	Α
R_{M}	Measuring resistance		$R_{ m Mmin}$	$R_{ m M \; max}$	
	with ±15 V	@ $\pm 500\mathrm{A}_{\mathrm{max}}$	0	31	Ω
		@ $\pm 740 A_{max}$	0	3	Ω
	with ±24 V	@ $\pm 500 A_{max}$	3	90	Ω
		@ $\pm 1000 A_{max}$	3	17	Ω
		@ $\pm 1200 A_{max}$	3	5	Ω
$I_{\mathrm{S}\;\mathrm{N}}$	Secondary nominal RMS current		143		mΑ
$N_{\rm P}\!/N_{\rm S}$	Turns ratio		1 : 35	00	
$U_{\mathtt{C}}$	Supply voltage (±5 %) 1)		±15	. 24	V
I_{C}	Current consumption		30 (@) ±24) + I _S	mΑ

Accuracy - Dynamic performance data

$\varepsilon_{\mathrm{tot}}$	Total error @ I_{PN} , T_{A} = 25 °C		±0.6		%
$\varepsilon_{_{\mathrm{I}}}$	Linearity error		< 0.1		%
_			Тур	Max	
I_{O}	Offset current @ $I_P = 0$, $T_A = 25$ °C			Max ±0.45	mΑ
$I_{O \scriptscriptstyle T}$	Temperature variation of $I_{\rm O}$	−25 °C +70 °C	±0.3	±0.5	mΑ
		−40 °C +70 °C	±0.5	±0.8	mΑ
t _{D 90}	Delay time to 90 % of the final ou	tput value for I_{PN} ste	ep ²⁾ < 1		μs
BW	Frequency bandwidth (-1 dB)		DC	100	kHz


General data

T_{A}	Ambient operating temperature	- 40 +70	°C
T_{Ast}	Ambient storage temperature	- 40 +85	°C
R_{S}	Resistance of secondary winding @ T_A = 70 °C	56	Ω
m	Mass	230	g
	Standards	EN 50155: 2021	

Notes: 1) With $U_{\rm C}$ = ±24 V (±3 %), $R_{\rm M \, min}$ = 1.6 Ω

²⁾ For a di/dt = 100 A/µs.

$I_{PN} = 500 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Special features

- $I_{PM} = 0 \dots \pm 1200 \text{ A}$
- $N_{\rm p}/N_{\rm s}$ = 1:3500
- $U_{\rm C}$ = ±15 ... ±24 (±5 %) V ¹⁾
- $T_{\wedge} = -40 \,^{\circ}\text{C} \dots +70 \,^{\circ}\text{C}$
- Connection to secondary circuit on M4 threaded studs.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- Single or three phase inverters
- Propulsion and braking choppers
- Propulsion converters
- Auxiliary converters
- Battery chargers.

Application domains

Railway (fixed installations and onboard).

Current Transducer LF 505-S/SP22

Insulation coordination				
$U_{\rm d}$	RMS voltage for AC insulation test, 50 Hz, 1 min	4 Min	kV	
d_{Cp}	Creepage distance 1)	29.5	mm	
$d_{Cp} \ d_{Cl}$	Clearance 1)	26.5	mm	
CTI	Comparative tracking index (group IIIa)	175		

Note: 1) Distance between 'A' and 'B' see outline drawing.

Safety

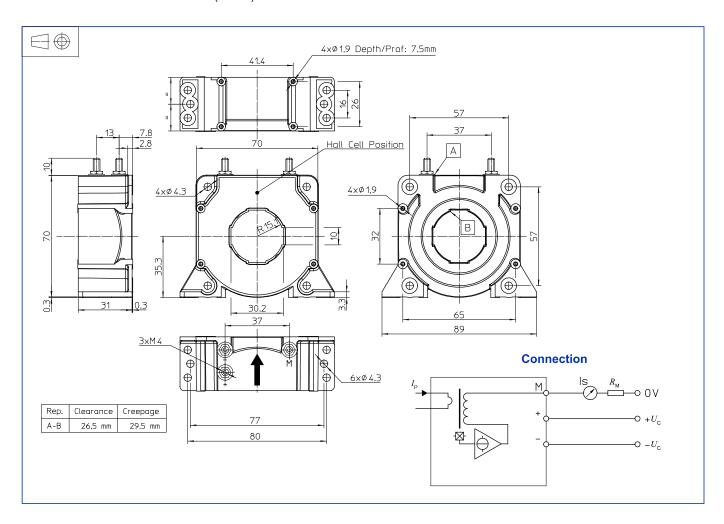
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LF 505-S/SP22 (in mm)

Mechanical characteristics

General tolerance

Transducer fastening

Vertical or horizontal position

Recommended fastening torque

or vertical position

Recommended fastening torque

or horizontal position

Recommended fastening torque

Primary through-hole

Connection of secondary Recommended fastening torque 1.2 N·m or 0.88 Lb.-Ft

±0.5 mm

4 or 6 holes Ø 4.3 mm

4 or 6 M4 steel screws 3.2 N·m or 2.37 Lb.-Ft

4 holes Ø 1.9 mm, depth: 7.5 mm

4 screws PTKA 25, length: 6 mm

0.7 N·m or 0.52 Lb.-Ft 4 holes Ø 1.9 mm

crossing

4 screws PTKA 25,

length: 10 mm 0.75 N·m

or 0.55 Lb.-Ft Ø 30.2 mm

M4 threaded studs

Remarks

- $I_{\rm S}$ is positive when $I_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download/.
- Dynamic performances (di/dt and delay time) are best with a single bar completely filling the primary hole.