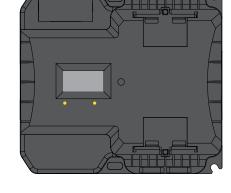


Direct Current Billing Meter DCBM series Imax = 80A

Ref: DCBM 100

DCBM 100 series is a direct connected energy meter dedicated to DC applications. The range of operating currents and operating temperatures offered by the DCBM 100 series facilitate integration and meet the specific constraints of electric vehicle charging systems. The DCBM 100 series offers a power loss compensation system, and is particularly suited for DC Wallbox charging Electric Vehicles. The product offers HTTP communication with a full set of APIs for quick start-up and easy integration, and OCMF format compliant with S.A.F.E verification software.



- Voltage measurement 150 ... 1000 V DC
- Current range 80A
- · Bi-directional energy metering
- Accuracy Class B, -40 °C to +80 °C
- · Cable loss compensation
- Ethernet communication with HTTP
- Signed data readouts in OCMF
- Monitoring of Status/ current / voltage / temperature / energy
- · Integrated high contrast display
- Transaction handling with start & stop tags, user data fields tariff identification, and authentication
- Auxiliary power supply range +12 ... +24 V DC
- DIN rail 35 mm and screw mounting
- Sealing of terminals and interfaces.

Advantages

- OpenAPI for easy integration into systems
- Flexible integration with cables
- OCMF readouts compliant with S.A.F.E.
- Compliant for energy billing or parking time billing
- MessEV and MID approved
- System monitoring.

Applications

- Electric Vehicle Charging infrastructures
- Data centers
- DC grids & Energy Monitoring
- Energy storage, renewables.

Standards

- EN 50470-1: 2006
- EN 50470-3: 2006
- PTB-A 50.7
- PTB-A 20.1
- CISPR32 Class-B emission
- Directive 2014/32/EU (MID)
- IEC 62052-11: 2003
- IEC 61000-6-2: 2016
- IEC 61000-6-3: 2016
- UL94-V0
- IEC 62052-31:2014.

Application Domain

- Industrial
- Renewable energies.

Operating conditions

Meter

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T_{A}	°C	-40		+80	
Ambient storage temperature	T_{Ast}	°C	-40		+80	
Relative humidity	RH	%			95	
Mass	m	g			317	+/- 10%
Impact rating				IK05		According to IEC 62262
Ingress protection rating				IP20		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Pollution degree		PD	2	
Rated altitude		m	3000	
Rated insulation voltage		V DC	1000	
Case material			V0	According to UL 94
Insulation between live parts and accessible parts				Overvoltage limitation ensured
- Insulation type			Reinforced	by charging station, according to IEC61851-23:2014, §11.4.101
- Overvoltage category			l II	12001031-23.2014, 911.4.101
- Impulse withstand voltage	U_{Ni}	kV	5,96	Insulation between SELV and HV
- RMS voltage for AC insulation test (5s)	U_{d}	kV	3.24	100 % tested in production
Insulation between voltage terminals				
- Insulation type			Basic	Insulation between VP and VN
- Impulse withstand voltage	U_{Ni}	kV	3,75	

Page 2/7

General electrical specifications

Meter

Parameter	Symbol	Unit	Min	Тур	Max	Comment		
Supply voltage	U_{C}	V DC	+12		+24	±5 %		
Supply current	I	mA	30		80	MIN @ +24VDC/-40°C		
	¹ C	1117 (Max @ +12VDC/+80°C		
Supply bridging time		ms	30			Without going in power fail state		
Start-up time 1)		s			10	@ +24 V DC		
Energy reserve charging time 2)		s	3					

Notes: 1) Start-up time is the wait to get communication functionality over the HTTP inerface after power is restored.

Warranty

The product DCBM 100 is guaranteed 3 years.

²⁾ Energy reserve charging time is the wait to get supply bridging capabilities. Power supply must be stable during this period. Product must be powered-up at nominal voltage during this time before starting a transaction. It is further recommended not to switch on the product for less than the Energy reserve charging time.

Energy measurement and accuracy

Parameter	Symbol	Unit	DCBM 100	Comment			
Accuracy class			В				
Meter type			Direct connected meter	According to EN 50470-3: 2006 and EN 50470-1: 2006			
Energy measurement bandwith			DC				
Current specification							
- Starting current	I_{st}	mA	64				
- Minimum current	I_{min}	Α	0.8				
- Transitional current	I_{tr}	A	1.6				
- Reference current	I_{ref}	Α	16				
- Maximum current	I_{max}	Α	80				
Voltage specification							
- Range voltage	U_{ref}	V DC	150 1000				
- Maximum limit range of operation	U_{max}	V DC	1100				
- Minimum limit range of operation 1)	U_{min}	V DC	135				
Cable loss compensation ²⁾		mΩ	0-35	By steps of 5 m Ω , imported and exported energy. Selectable by charging station or fix value (see product desigation)			
Test Output LED 3)		Imp/kWh	10 000				
Counting direction			Bidirectional	Imported and exported energy registers			

Connection and terminals

Meter

Parameter	Value	Comment
Ethernet interface	RJ45	
Power supply terminal		
- Type	Screw terminal	
- Rated cross section	0.14 - 1.5 mm²	
- Maximum tightening torque	0.6 N·m	

Notes: 1) Creep mode is enabled if DC bus voltages goes below 110 V DC.

²⁾ Depending on product reference, fix or dynamic cable loss compensation is available, refer to product's name and codification to select cable loss compensation type. With dynamic compensation, the value is selected between 0-35 m Ω (by step of 5 m Ω) at start of transaction. With fix compensation, the value is locked to the fix value. Cable loss compensation is enabled only during a transaction (between start and stop tags), outside of a transaction no compensation is applied.

³⁾ After reboot, the test output LED is lit as long as the creep mode conditions are met.

Interfaces and communication

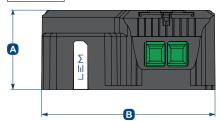
Parameter	Value	Comment
Display technology	OLED	
Ethernet interface	НТТР	REST APIs with Json content
IP settings	Static IP / DHCP	
System monitoring	Status/Current / Voltage / Temperature / Power / Energy	at 10 Hz refresh rate
Readout data format	OCMF	OCMF format compliant with S.A.F.E. transparency software
Data authenticity	Asymetric cryptography with public key	
Number of transactions stored	50	Ackonwledgment of backend save mandatory for authorizing new transactions
Logbook entries	204000	New transactions are blocked when logbook is full
Time synchronization	SNTP / from API	Time synchronization with SNTP service, or set with the "/setting" API
Transaction status LED	Active during transaction	a power failure is stoping, signing and saving a transaction

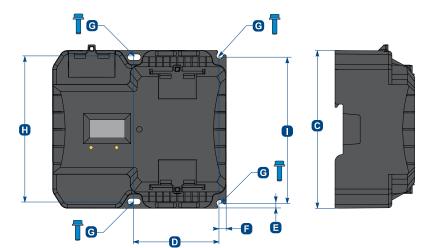
Definition of typical, minimum and maximum values

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs.

On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval.

Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %.


For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution.


Typical, maximal and minimal values are determined during the initial characterization of the product.

Meter dimensions

- A 56 mm (±0.2) B 122 mm (±0.2)
- © 111 mm (±0.2)
- 0 60 mm (±0.2)
- 3.7 mm
- **3** 4.7 mm
- G 4x M4 screws with internal drive (torque max 2 Nm) 4x M4 Schrauben mit Innenantrieb (Drehmoment2 Nm) 4x Vis M4 à entraînement intérieur (couple max 2 Nm)
- (H) 101.5 mm (±0.2)
- 103.5 mm (±0.2)

Description and Codification

All codifications included in DC Meter are.

For example, DCBM_N0M_0800W00_0000C00 codification includes the following elements:

	D	с	В	М	120	N	0	М	388	0	8	0	0	 0	0	0	0
Meter family DCBM: Direct Current Energy Meter																	
Time Source N:Time synchronization NTP or API																	
Cable Loss compensation 0: Dynamic (Table-refer to datasheet) 1: No compensation 2: 5mR 3: 10mR 4:15mR																	
Certification: 0: CE marking (generic product for EU market, whithout legal metrology certification + UL marking (USA)) D: MessEV (Germany national certification) M: MID (measuring instrument Directive 2014/32/EU)																	8
Delivery Option: W: Without Accessory																	
Current Range 08: 80 A 0/1: Direct I1-> I2 or reverse I1<- I2 0: Reserved		,		2		2		8)