

CAN(FD)-BUS 通信产品

UM01010101 V1.03 Date: 2021/06/03

产品用户手册

| 类别  | 内容                       |
|-----|--------------------------|
| 关键词 | CANFDBridge CANFD-bus 网桥 |
| 摘要  | CANFD 智能网桥介绍说明           |





CAN(FD)bus 智能网桥

修订历史

| 版本    | 日期         | 原因                              |  |  |  |
|-------|------------|---------------------------------|--|--|--|
| V1.00 | 2018/09/11 | 创建文档                            |  |  |  |
| V1.01 | 2019/03/12 | 更新文档页眉页脚、"销售与服务网络"内容和新增"免责声明"内容 |  |  |  |
| V1.02 | 2020/09/14 | 增加产品安装尺寸图                       |  |  |  |
| V1.03 | 2021/06/03 | CAN(FD)波特率范围描述                  |  |  |  |

产品用户手册



CAN(FD)bus 智能网桥

|  | 录 |
|--|---|
|  |   |

| 1. | 功能               | 简介     |                 | 1  |
|----|------------------|--------|-----------------|----|
|    | 1.1              | 概论     | 述               | 1  |
|    | 1.2              | 产品     | 品特性             | 1  |
|    | 1.3              | 典型     | 型应用             | 1  |
| 2. | 硬件               | 描述     |                 | 2  |
|    | 2.1              | 产品     | 品外观与安装尺寸图       | 2  |
|    | 2.2              | 电测     | 源及 USB 接口       | 3  |
|    | 2.3              | CA     | .N(FD)通讯接口      | 3  |
|    | 2.4              | 指示     | 示灯说明            | 4  |
|    | 2.5              | CA     | N 总线连接          | 4  |
| 3. | 驱动               | 与配置    | 置工具安装           | 6  |
|    | 3.1              | Wir    | ndows 系统下安装驱动程序 | 6  |
|    | 3.2              | 上位     | 位机软件 CANCfg 安装  | 8  |
|    |                  | 3.2.1  | 配置工具安装示例        | 8  |
| 4. | 快速               | 使用打    | 指南              | 10 |
|    | 4.1              | 获耳     | 取设备基本信息         | 10 |
|    | 4.2              | 管理     | 理设备配置           | 11 |
|    | 4.3              | 配量     | 置参数说明           | 11 |
|    |                  | 4.3.1  | CAN             | 11 |
|    |                  | 4.3.2  | 失败回送示例          | 14 |
|    |                  | 4.3.3  | 基础转发示例          | 15 |
|    |                  | 4.3.4  | 滤波              | 16 |
|    |                  | 4.3.5  | 帧映射             | 17 |
|    |                  | 4.3.6  | 帧映射示例           | 18 |
|    |                  | 4.3.7  | 合并              | 20 |
|    |                  | 4.3.8  | 合并示例            | 21 |
|    |                  | 4.3.9  |                 |    |
|    |                  | 4.3.10 | ) 拆分示例          | 23 |
|    | 4.4              | · 议 征  | 备状态获取与上报        | 25 |
|    |                  | 4.4.1  | 犹取设备 CAN 接口错误计数 |    |
| ~  | ኒቢ ሎ             | 4.4.2  | 头旳              |    |
| 5. | (<br>位<br>在<br>士 | 「固件ナ   | 什               |    |
| 6. | 旡贞               | 戸明     |                 |    |



# 1. 功能简介

## 1.1 概述

CANFDBridge 智能 CANFD 网桥是一款性能优异的 CAN(FD)中继、CAN(FD)报文转换 设备。它能够增加总线的负载能力和延长通信距离,匹配不同通讯波特率的 CAN(FD)网络,同时支持 CAN 和 CANFD 网络的转换。

CANFDBridge 作为 CAN(FD)智能网桥,支持 CAN 转 CAN、CAN 转 CANFD、CANFD 转 CANFD 转 CANFD 等报文默认转换处理。除此之外,还提供帧映射、合并(若干 个 CAN 报文组成一个 CANFD 报文)和拆分(一个 CANFD 报文拆分成若干个 CAN 报文)等特殊转换处理。用户可自由设定 CAN(FD)报文的转发映射、组包拆包等规则,满足自身应用 需求。用户通过 USB 接口连接 PC 后,使用 CANFDBridge 配置工具配置波特率及规则后即 可脱机使用,简单易用。

## 1.2 产品特性

- ◆ 两路完全电气隔离的 CAN(FD)通道,支持配置选择 CAN 控制器是 CAN 还是 CANFD;
- ◆ 支持两端 CAN (FD)通道波特率设置,可设置常用波特率,且支持自定义波特率;
- ◆ 支持波特率范围 40k~5Mbps;
- ◆ 支持设置两端 CAN(FD)通道 120 欧姆终端电阻开关;
- ◆ 支持设置两端 CAN(FD)通道接收硬件滤波功能,每通道支持 64 条标准/扩展帧 ID,滤 波方式采用白名单滤波,令 CAN 总线的负荷降到最低;
- ◆ 当使用 USB 连接设备到电脑时,通过 CANFDBridge 配置工具可以开启自动上报记录两端 CAN(FD)通道当前错误状态、错误计数(发送、接收错误计数)的功能,可作为一个非常实用的 CAN 网络状况分析仪,可快速判断 CAN 网络的通信质量;
- ◆ 支持 CAN(FD)报文转发,包括三种转发方式: (1)基础转发; (2)帧映射; (3)组包拆包; 转发功能主要对接收的 CAN(FD)帧进行转发。转发前对接收的帧进行映射、组包拆包 等处理,将处理后的帧发送。其处理优先级为: 组包拆包>帧映射>基础转发;
- ◆ 支持转发失败后,返回指定帧来告诉发送方,告知转发失败;
- ◆ 中继时, CAN 单路标准帧速率可达 6000 帧/秒, CANFD 单路标准帧可达 4600 帧/秒;
- ◆ 只使用中继时,转发延时 40us 左右,当同时使用帧映射、合并拆分功能时,转发延时 50us 左右。帧映射、合并拆分规则越多,转发延时越大,转发延时还受波特率影响, 波特率值较小时,如 50Kbps,转发延时达 60us;
- ◆ CAN-bus 电路采用 DC 2500V 电气隔离;
- ◆ 可用在有安全防爆需求的环境中;
- ◆ 工作温度: -40~+85℃; 工作功率: 低于 2W;

## 1.3 典型应用

- 煤矿远程通讯;
- 工业现场控制;
- 远程监控与数据采集;
- 电力通讯;

产品用户手册



CAN(FD)bus 智能网桥

# 2. 硬件描述

# 2.1 产品外观与安装尺寸图

外观、安装尺寸图如图 2.1、图 2.2 所示。



图 2.1 CANFDBridge 外观图(未安装挂耳)

产品用户手册



图 2.2 CANFDBridge 安装尺寸图

# 2.2 电源及 USB 接口

CANFDBridge 设计了两种供电方式,第一种是通过 USB 供电,第二种是通过直流电源 供电,使用任意一种供电方式即可工作,同时外接电源和 USB 线也是可以的,但推荐在配 置设备时才使用 USB 供电方式,其他情况下用直流电源供电,USB 连接线采用的是 B 型(方 口),出厂时配备一条 USB 线缆;直流电源接口引脚定义如表 2.1 所示

| 表 2.1 | 接口描述 |
|-------|------|
|-------|------|

| 类型    | 示意图 | 引脚定义      | 引脚说明  |  |
|-------|-----|-----------|-------|--|
| OPEN3 |     | 1: GND    | 电源输入负 |  |
|       |     | 2: EARTH  | 大地    |  |
|       |     | 3: 9V-48V | 电源输入正 |  |

# 2.3 CAN(FD)通讯接口

CANFDBridge 具有两个 CAN(FD)-bus 接口,其接口引脚定义所表 2.2 示。

表 2.2 CAN 接口定义

| 类型     | 示意图                                     | 引脚定义     | 引脚说明           |
|--------|-----------------------------------------|----------|----------------|
| DB9 插座 | 2L 3GND 3FG 3GND 7H                     | 1: NC    | 悬空             |
|        | $(1_0 \bullet \bullet \circ \bullet^5)$ | 2: CAN_L | CAN 数据收发差分反相信号 |
|        |                                         |          |                |

| 产品用户手册 |  |
|--------|--|
|--------|--|



CAN(FD)bus 智能网桥

|               |                                                                                                                                                                                                                                    | 3、6: CAN_GND | CAN 隔离地        |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
|               |                                                                                                                                                                                                                                    | 4、8: NC      | 悬空             |
|               |                                                                                                                                                                                                                                    | 5: 屏蔽        | 屏蔽地            |
|               |                                                                                                                                                                                                                                    | 7: CAN_H     | CAN 数据收发差分正相信号 |
|               |                                                                                                                                                                                                                                    | 9: NC        | 悬空             |
|               | <b>2</b> $\bigcirc$ GND $\bigcirc$ FG $\bigcirc$ GND $\bigcirc$ H<br>$\begin{pmatrix} 10 \\ 6 \\ 6 \\ 6 \\ 0 \\ 9 \\ \hline \\ CAN1 \\ \hline \\ $ | 1: NC        | 悬空             |
|               |                                                                                                                                                                                                                                    | 2: CAN_L     | CAN 数据收发差分反相信号 |
|               |                                                                                                                                                                                                                                    | 3、6: CAN_GND | CAN 隔离地        |
| <b>DB9</b> 插座 |                                                                                                                                                                                                                                    | 4、8: NC      | 悬空             |
|               |                                                                                                                                                                                                                                    | 5: 屏蔽        | 屏蔽地            |
|               |                                                                                                                                                                                                                                    | 7: CAN_H     | CAN 数据收发差分正相信号 |
|               |                                                                                                                                                                                                                                    | 9: NC        | 悬空             |

## 2.4 指示灯说明

CANFDBridge 有 4 个红绿双色 LED 用来指示其运行状态,功能如表 2.3 所示。

| 指示灯       | 状态   | 指示状态                |  |  |
|-----------|------|---------------------|--|--|
|           | 绿色   | 设备上电                |  |  |
| SYS 指示灯   | 不亮   | 设备未上电               |  |  |
|           | 绿色闪烁 | 设备运行中               |  |  |
|           | 不亮   | 未插 USB 线            |  |  |
|           | 红色常亮 | USB 线已连接但驱动未安装      |  |  |
| USB 指示灯   | 绿色常亮 | USB 驱动已安装且已插入 USB 线 |  |  |
|           | 绿色闪烁 | USB 正与设备通讯          |  |  |
|           | 红色闪烁 | USB 与设备通讯错误         |  |  |
| CANFD     | 绿色常亮 | CAN 通道空闲            |  |  |
| 通道指示灯     | 绿色闪烁 | CAN 通道正在发送/接收数据     |  |  |
| (通道0、通道1) | 红色闪烁 | CAN 通道总线错误          |  |  |

## 表 2.3LED 指示灯状态

# 2.5 CAN 总线连接

物理层主要是完成设备间的信号传送,把各种信息转换为可以传输的物理信号(通常为 电信号或光信号),并将这些信号传输到其他目标设备。基于该目的,CAN-bus 对信号电平、 通信时使用的电缆及连接器等做了详细规定。

CAN-bus 由 ISO 标准化后发布了两个标准,分别是 ISO11898-2(125kbps~1Mbps 的高速通信标准)和 ISO11898-3(小于 125kbps 的低速通信标准)。

| 产 | 品 | 用 | 户手 | 册 |
|---|---|---|----|---|
|---|---|---|----|---|

CAN(FD)bus 智能网桥

CAN 收发器根据两根线缆之间的电压差来判断总线电平,这种传输方式被称为差分传输。线缆上传输的电平信号只有两种可能,分别为显性电平和隐性电平,其中显性电平代表逻辑 0,隐性电平代表逻辑 1。高速 CAN 电气特性如表 2.4 所示。

| 参数                    | 最小值     | 典型值  | 最大值 | 单位   |     |
|-----------------------|---------|------|-----|------|-----|
| 通讯波特率                 |         | 5k   |     | 1M   | bps |
| 节点数                   |         |      |     | 110  | pcs |
| 目始中亚 ()四提 0)          | CANH    | 2.75 | 3.5 | 4.5  |     |
| 亚任电干(这440)            | CANL    | 0.5  | 1.5 | 2.25 |     |
| 陷阱由亚 ( <b>)</b> 翌提 1) | CANH    | 2    | 2.5 | 3    | 1   |
| 尼住电干(这再1)             | CANL    | 2    | 2.5 | 3    |     |
| 差分由平                  | 显性(逻辑0) | 1.5  | 2   | 3.0  | V   |
|                       | 隐性(逻辑1) | -0.5 | 0   | 0.05 |     |
| 总线引脚最大耐压              |         | -18  |     | 18   |     |
| 总线瞬时电压                |         | -100 |     | +100 |     |
| 隔离电压(直流)              |         | 2500 |     |      | V   |

#### 表 2.4CAN-BUS 接口规格

CAN 总线采用平衡传输。ISO11898-2 规定: 在高速 CAN 网络中, 需要在网络终端节 点处接入 120Ω 终端电阻,用于消除总线上的信号反射,避免信号失真。高速 CAN 网络拓 扑如图 2.3 所示。

该设备内置 120Ω 终端电阻, 可通过配置工具 CANCfg 软件来配置该终端电阻接通或断 开。



图 2.3 高速 CAN 网络拓扑

注:总线通讯距离、通讯速率与现场应用相关,可根据实际应用和参考相关标准设计。CAN-Bus 电缆可以 使用普通双绞线、屏蔽双绞线或标准总线通信电缆。远距离通讯时,终端电阻值需要根据通讯距离以及线 缆阻抗和节点数量选择合适值。

ZLG 致远电子

ZLG 致远电子

# 3. 驱动与配置工具安装

CANFDBridge 使用 USB Type-B 线连接电脑后,再使用 CANCfg 软件对其进行参数配置。所以用户在使用 CANFDBridge 前需要安装 CANFDBridge 驱动和 CANCfg 上位机软件。本文以 Win7 操作系统的电脑为实例,说明如何正确安装 CANFDBridge 驱动程序和 CANCfg 上位机软件以及对 CANCfg 软件操作进行说明。

## 3.1 Windows 系统下安装驱动程序

首先用 USB 线将 CANFDBridge 设备接到电脑,确保设备供电正常。鼠标右击【计算机】,点击【属性】(如图 3.1 所示),打开设备管理器,未安装驱动前,设备管理器显示如图 3.2 所示。此时,若设备管理器没有显示该信息,请检查 USB 线连接是否正确,电脑的 USB 口是否被禁用,设备指示灯 USB 是否亮。



图 3.1 打开电脑设备管理器

| 文件(f) 操作(A) 查看(V) 帮助(H)         ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | → 设备管理器                                                                                                                                                                                                                                                                                                                                                                                                                                                       | × |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 文件(F) 操作(A) 查看(V) 帮助(H)                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| ▲ LANGDEMING         ● ① DE ATA/ATAPI 控制器         ● 少理器         ● 型曲販切器         ● 型目 (COM 和 LPT)         ● 计算机         ● 型用         ● 型目         ● 型目 | 🗇 🏟 🖬 🔽 🖬 🛝                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>▲ LIANGDEMING</li> <li>▲ DE ATA/ATAPI 控制器</li> <li>▲ 处理器</li> <li>▲ 处理器</li> <li>▲ 处理器</li> <li>▲ 碰越歌动器</li> <li>* 详 算机</li> <li>▲ 监视器</li> <li>● 键盘</li> <li>● 键盘</li> <li>● 其他设备</li> <li>▲ 人体学输入设备</li> <li>● 一方 人体学输入设备</li> <li>● 一方 人体学输入设备</li> <li>● 一方 人体学输入设备</li> <li>● 一方 人体学输入设备</li> <li>● 通用串行总线控制器</li> <li>● ● 通用串行总线控制器</li> <li>● ● 通用串行总线控制器</li> <li>● ● ● ● 通用串行总线控制器</li> <li>● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●</li></ul> |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |

图 3.2 未安装驱动

产品用户手册



CAN(FD)bus 智能网桥

右击【CANFDBridge】,选择【更新驱动程序软件】,进入更新驱动软件界面图 3.3 所示。

| 9 | ◎ 更新驱动程序软件 - CANFDBridge                                                            | <b>X</b> |
|---|-------------------------------------------------------------------------------------|----------|
|   | 您想如何搜索驱动程序软件?                                                                       |          |
|   | ◆ 自动搜索更新的驱动程序软件(S)<br>Windows 将在您的计算机和 Internet 上查找用于相关设备的最新驱动程序软件,除非在设备安装设备中禁用该功能。 |          |
|   | → 浏览计算机以查找驱动程序软件(R)<br>手动查找并安装驱动程序软件。                                               |          |
|   |                                                                                     |          |
|   |                                                                                     | 取消       |

### 图 3.3 更新驱动程序

如图 3.4 所示,在弹出界面中,点击【浏览】,选择官方提供的 CANFDBridge 驱动 文件夹后,点击【下一步】,等待驱动程序安装完成。

| 更新驱动程序软件 - CANFDBridge                                                       |                       |
|------------------------------------------------------------------------------|-----------------------|
| 浏览计算机上的驱动程序文件                                                                |                       |
| 在以下位置搜索驱动程序软件:                                                               |                       |
| F:\驱动\CANFDBridge资料\CANFDBridge_drv ▼ 浏览(R)                                  | → 点击"浏览",选择<br>驱动的路径  |
| ☑ 包括子文件夹(I)                                                                  |                       |
| → 从计算机的设备驱动程序列表中选择(L)<br>此列表将显示与该设备兼容的已安装的驱动程序软件,以及与该设备处于同一类别下的<br>所有驱动程序软件。 | ➡★ 点击"下一步",开始<br>安装驱动 |
| 下—步(N) 取消                                                                    |                       |

图 3.4 安装驱动程序



CAN (FD) bus 智能网桥

安装完成后,弹出窗口显示"已成功地更新驱动程序文件",点击【关闭】按钮完成安装,如图 3.5 所示。

|                            | ×     |
|----------------------------|-------|
| 🕞 🗕 更新驱动程序软件 - CANFDBridge |       |
| - Windows 已经成功地更新驱动程序文件    |       |
| Windows 已经完成安装此设备的驱动程序软件:  |       |
| CANFDBridge                |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            | 关闭(C) |

图 3.5 完成驱动程序安装

驱动安装完成后,在设备管理器中显示 ( CANFDBridge ,代表驱动程序正确安

装,设备 USB 灯由红色变为绿色常亮。此时 CANFDBridge 与 PC 已经完成连接,可以 使用 CANCfg 上位机软件对 CANFDBridge 进行参数配置。

# 3.2 上位机软件 CANCfg 安装

CANCfg 软件是运行在 Windows 平台上的本公司 CAN-Hub 和 CAN-Bridge 类设备专用 配置软件,用户可以通过 CANCfg 软件实现获取和更改 CANFDBridge 设备的配置参数和升 级设备固件等多种功能。

## 3.2.1 配置工具安装示例

可从致远电子官网 <u>www.zlg.cn</u>, 搜索 "CAN 组网设备配置工具"下载最新版 CANCfg 软件。双击解压出来的 CANCfgSetup.exe 文件, 出现如图 3.6 所示欢迎窗口, 点击【下一步】 进行安装。



图 3.6 欢迎界面

```
产品用户手册
```



CAN(FD)bus 智能网桥

如图 3.7 所示的窗口被打开,该窗口询问您需要安装的目录(默认安装到 C:\Program Files(x86) \CANCfg 目录),如果需要更改安装目录,可以点击【浏览】按钮。

| 🕓 CANCfg V1.37 安装                                                          | - • 💌      |
|----------------------------------------------------------------------------|------------|
| <b>法择安装位置</b><br>选择"CANCfg V1.37"的安装文件夹。                                   |            |
| Setup 将安装 CANCfg V1.37 在下列文件夹。要安装到不同文件夹,<br>并选择其他的文件夹。 单击 [安装 (I)] 开始安装进程。 | 单击 [浏览(8)] |
| 目标文件夹<br>D:\Program Files(x86)\CANCfg\                                     | 刘赀 (8)     |
| 所需空间: 54.4MB<br>可用空间: 20.3GB                                               |            |
| Nullsoft Install System v2.46(上一步 CP) 安装 CD                                |            |

图 3.7 选择安装路径

点击【安装】开始把文件安装到安装目录中,安装完成后弹出如图 3.8 所示的安装成功 的提示窗口,点击【完成】退出安装软件。



图 3.8 安装完成提示窗口



# 4. 快速使用指南

本章讲述使用 CANCfg 软件对 CANFDBridge 设备进行操作的说明,帮助用户熟悉产品的使用。

## 4.1 获取设备基本信息

双击图标 彩运行 CANCfg 软件,软件界面如图 4.1 所示。

| ፉ CANCfg                                                                                                                                  | _ = × |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 」文件 视图 窗口 Language                                                                                                                        | 关于    |
| 设备类型                                                                                                                                      |       |
| CAN-Hub<br>CANhub-AF2S2<br>CANhub-AF1S1<br>CANhub-AF1S1<br>CANhub-AS5<br>CAN-Bridge<br>CANBridge<br>CANBridge<br>CANBridge<br>CANFDBridge |       |
|                                                                                                                                           |       |

图 4.1 CANCfg 运行界面

在左侧设备类型选择(鼠标左键单击)当前要使用的设备 CANFDBridge,之后弹出 CANFDBridge 配置界面,如图 4.2 所示。

| 🥪 - [CANFDBridge]                                                                                                                                |                 | - = x |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|
| 😡 文件 视图 窗口 Language                                                                                                                              | 关于              |       |
| 设备类型                                                                                                                                             | 🕪 CANFDBridge   | 4 ▷ x |
| CANHub -AF252<br>CANHub-AF252<br>CANHub-AF35<br>CANHub-AF35<br>CANHub-AF35<br>CAN-Bridge<br>CAN-Bridge<br>CANBridge<br>CANBridge+<br>CANFDBridge | 基本信息       序列号: |       |

图 4.2 CANFDBridge 基本信息界面

```
产品用户手册
```



连接好设备后,可点击 <sup>翻吸备值息</sup> 按钮即可获取设备信息,本次使用设备获取信息如图 4.3 所示,若获取不到信息则表示设备可能未正常连接到电脑,检查设备 USB 灯是否常亮红 色,如果常亮红色表示与电脑连接异常或驱动未安装。

| ─设备信息 ────  |                                  |      |
|-------------|----------------------------------|------|
| 序列号:        | 36A0000EE270C8AA67D99B58061900F5 |      |
| 硬件:         | 0.01                             |      |
| 固件:         | 0.01.00                          |      |
| Bootloader: | 0.01                             | 设备日志 |

图 4.3 获取 CANFDBridge 设备信息

## 4.2 管理设备配置

在 CANFDBridge 基本信息界面中配置部分四个按钮分别表示:

【获取设备配置】表示从当前设备中获取设备所有配置参数,点击此按钮后会将当前设 备配置读取到波特率、滤波、中继、失败回送、帧映射、合并和拆分等窗口中显示出来。

【配置设备】表示将波特率、滤波、中继、失败回送、帧映射、合并和拆分等窗口中的 配置参数写入到设备中,写入后配置立即自动生效。

【从文件加载配置】从之前保存的配置文件中加载配置信息到波特率、滤波、中继、 失败回送、帧映射、合并和拆分等窗口中,若要配置到设备还需要点击【配置设备】按钮。

【保存配置到文件】将当前波特率、滤波、中继、失败回送、帧映射、合并和拆分等 窗口中参数信息保存到文件中,方便下次或其他设备使用。

#### 4.3 配置参数说明

#### 4.3.1 CAN

CAN 窗口用于配置 CANFDBridge 的两个通道参数,如波特率、CAN 控制器类型、终端电阻使能等,如图 4.4 所示。

| 控制器类型:        | CAN         | -            | CANFD协议:     | ISO      | -  |
|---------------|-------------|--------------|--------------|----------|----|
| 仲裁域波特率        | 1000kbps    | Ŧ            | 数据域波特率       | 5000kbps | -  |
| 🔽 自定义         |             |              |              |          |    |
| 1.0Mbps(80%), | 5.0Mbps(75% | ),(60,00018B | 2E,00010207) | 计算器      | 器制 |
| 🗖 终端电阻        |             |              |              |          | 高级 |
| N1            |             |              |              |          |    |
| 控制器类型:        | CAN         | *            | CANFD协议:     | ISO      | *  |
| 仲裁域波特率        | 1000kbps    | -            | 数据域波特率       | 5000kbps | T  |
| 🔽 自定义         |             |              |              |          |    |
| 1.0Mbps(80%), | 5.0Mbps(75% | ),(60,00018B | 2E,00010207) | 计算器      | 器制 |
| 🔲 终端电阻        |             |              |              |          | 高级 |
| 础转发           |             |              |              |          |    |
|               |             |              |              |          |    |
| 基础转发高级        | 设置          |              |              |          |    |
| 础转发规则ICAN     | 空制器类型有      | 关,修改控制       | 削器类型后自动修     | 改基础转发规   | 则  |

图 4.4 波特率窗口



ZLG 致远电子

CAN(FD)bus 智能网桥

每个通道都支持设置控制器类型,如图 4.5 所示。当选择类型为 CAN 时,只能收发 CAN 报文。用户可将接到 CAN 总线的端口控制器类型设置为 CAN,可防止 CANFD 报文转发到 CAN 总线。当选择类型为 CANFD 时, CAN 报文和 CANFD 报文都可以收发。

| CAN0    |         |               |          |   |
|---------|---------|---------------|----------|---|
| 控制器类型:  | CANFD * | CANFD协议:      | ISO      | - |
| 小おはむすちを | CAN     | 粉根芯肉桂萝        | 4000kbpg | - |
| 甲枞以及付平  | CANFD   | 资则1月13%1又1寸1平 | HOUOKDps |   |

图 4.5 控制器类型

每个通道支持设置 CANFD 协议标准,如图 4.6 所示。支持 ISO 标准和 Non-ISO 标准。

| CANO   |          |   |          |                | 1 |
|--------|----------|---|----------|----------------|---|
| 控制器类型: | CANFD    | - | CANFD协议: | ISO 👻          |   |
| 仲裁域波特率 | 1000kbps | - | 数据域波特率   | ISO<br>Non-ISO |   |

图 4.6 CANFD 协议

每个通道都支持选择启不启用内部的终端电阻,如需启用只需将<sup> 《 终端电阻</sup> 复选框勾选即

## 可,如果不勾选即为禁用内部终端电阻。

每个通道都支持设置波特率,设置界面如图 4.7 所示。在波特率选项中,分仲裁域波特率和数据域波特率。对于普通 CAN,波特率由仲裁域波特率决定,数据域波特率无效。对于 CANFD,如果使能了加速,数据域波特率才有效。CAN 总线波特率,除了列表中 CIA 推荐的标准波特率(采样点 75~83.5%,SJW = 2、3)之外,还给出了一个"自定义"选项,勾选自定义波特率后,在点击【计算器】即可调用波特率计算器来计算出自己想要的波特率值,将计算出的波特率值复制,填入自定义波特率框即可。

|         | 控制器类型: CANFD CANFD协议: ISO *                          |       |               |
|---------|------------------------------------------------------|-------|---------------|
|         | 仲裁域波特率 1000kbps   数据域波特率 5000kbps                    |       |               |
|         | 回自定义 BOOKbps                                         |       |               |
|         | 1.0Mbps(80%), 500kbps<br>250kbps ,0001882E,00010207) | 18.00 |               |
| 供默认波特   | 125kbps<br>回終端电阻<br>100kbps<br>10kbps                | 高级    |               |
| 选择 🔸    | CAN1 40kbps<br>控制器类型: 25kbps<br>20kbps 20kbps        |       |               |
|         | 仲裁域波特率 1000kbps 数据域波特率 5000kbps -                    |       |               |
| 聴能自定义 🗲 | 1 自定义                                                |       |               |
| 贴计算结果◀  | 1.0Mbps(80%),5.0Mbps(75%),(60,0001882E,00010207) 计算器 | 粘则占   |               |
|         | 终端电阻                                                 | 高级    |               |
|         | 基础转发                                                 |       | <b>海田油#主动</b> |
|         | 基础转发高级设置                                             |       | 计算器           |
|         | 基础转发规则CAN控制器类型有关,修改控制器类型后自动修改基础转发规则                  |       |               |

图 4.7 波特率设置

```
产品用户手册
```

波特率计算器方法如下:

- 如图 4.8 所示,设置①中的仲裁域波特率,选择合适的同步跳转宽度,选择所需要 的波特率值,如果下拉列表没有想要的值可以手动输入;
- 设置②中的数据域波特率参数,选择合适的同步跳转宽度,选择所需要的波特率值, 如果下拉列表没有想要的值可以手动输入;
- 3. 设置完后,点击③处的计算按钮即可列出对应波特率参数的计算结果供用户选择;
- 4. 选择合适采样点的仲裁域波特率值,选中后有蓝色背景色表示选中状态,如④所示;
- 5. 选择合适采样点的数据域波特率值,选中后有蓝色背景色表示选中状态,如⑤所示;
- 最后点击⑥处的复制按钮即可复制自定义波特率的值,将此值粘贴到自定义波特率 输入框即可。

| CANED (MEETAL                                                                    |                           |                                      |                                      | -                                                        |                                                                  |                                    | 32.93 |
|----------------------------------------------------------------------------------|---------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|------------------------------------|-------|
| 时钟: 60 *                                                                         | MHz.                      | 波特                                   | 案: 100                               | 00 🕴 kb                                                  | ops ft                                                           | 许误差: 0.05                          |       |
| 同步跳转宽度:                                                                          | 8. m.                     | +1                                   | tseg2 3                              | ≈ sjw                                                    |                                                                  |                                    |       |
| Value                                                                            | BRP                       | TSEGI                                | TSEG2                                | SMP                                                      | Baud                                                             | Diff                               |       |
| 1 03800001                                                                       | 14                        | 1                                    | 0                                    | 75.00 %                                                  | 1000000 bps                                                      | 0.00 %                             |       |
| 2 0200002                                                                        | 11                        | 2                                    | 0                                    | 80.00 %                                                  | 1000000 bps                                                      | 0.00 %                             |       |
| 3 02400003                                                                       | 9                         | 3                                    | D                                    | 83.33 %                                                  | 1000000 bps                                                      | 0.00 %                             |       |
| 4 01400007                                                                       | 5                         | 7                                    | σ                                    | 90.00 %                                                  | 1000000 bps                                                      | 0.00 %                             |       |
| 5 01000009                                                                       | 4                         | 9                                    | 0                                    | 91.67 %                                                  | 1000000 bps                                                      | 0.00 %                             |       |
| CANFD 数据域                                                                        | UHr                       | 波特                                   | 案: 400                               | 00 • kb                                                  | ps H                                                             | 许误差: 0.05                          |       |
| 日寸年中: 60 •                                                                       | - La.                     | 1.10                                 | 1 C                                  |                                                          |                                                                  |                                    |       |
| 时钟: 50<br>同步跳转宽度:<br>Yalue                                                       | 0 ×<br>BRP                | +1 X                                 | tseg2 3                              | ≈ sjw<br>SMP                                             | Baud                                                             | Diff                               | ŕ     |
| 时钟: 50<br>同步跳转宽度:<br>¥alue<br>1 00800002                                         | 0 BRP                     | +1 ISEG1                             | tseg2 3<br>TSEG2<br>0                | ≈ sjw<br>SMP<br>80.00 %                                  | <b>Baud</b><br>4000000 bps                                       | Di£f<br>0.00 %                     | ľ     |
| 时钟: 60<br>同步跳转宽度:<br>¥alue<br>1 00800002<br>2 0000000C                           | 0 ×<br>BRP<br>2<br>0      | +1 x<br>TSEG1<br>2<br>12             | tseg2 3<br>TSEG2<br>0                | ≈ sjw<br>SMP<br>80.00 %<br>93.33 %                       | <b>Baud</b><br>4000000 bps<br>4000000 bps                        | Diff<br>0.00 %<br>0.00 %           |       |
| 时钟: 60<br>同步跳转宽度:<br><b>Value</b><br>1 00800002<br>2 0000000C<br>3 0000010B      | 0 *<br>ERP<br>2<br>0<br>0 | +1 x<br>TSEG1<br>2<br>12<br>11       | tseg2 3<br>TSEG2<br>0<br>0           | <pre>&gt; sjw</pre> SmP 80.00 % 93.33 % 86.67 %          | Baud<br>4000000 bps<br>4000000 bps<br>4000000 bps                | Diff<br>0.00 %<br>0.00 %           |       |
| 时钟: 60<br>同步跳转宽度:<br>Value<br>1 00800002<br>2 0000000C<br>3 000010B<br>4 000020A | 0 BRP<br>2 0<br>0 0       | +1 x<br>TSEGI<br>2<br>12<br>11<br>10 | tseg2 3<br>TSEG2<br>0<br>0<br>1<br>2 | ≈ sj×<br>SMP<br>80.00 %<br>93.33 %<br>86.67 %<br>80.00 % | Baud<br>4000000 bps<br>4000000 bps<br>4000000 bps<br>4000000 bps | Diff<br>0.00 %<br>0.00 %<br>0.00 % |       |

图 4.8 波特率计算器使用步骤

每个通道都提供高级设置,通过点击 高级按钮进入高级设置界面,界面如图 4.9 所示, 在高级设置中可设置通道的转发模式和失败回送功能。

| 高级设置                                                              | x |
|-------------------------------------------------------------------|---|
| CANO<br>□ 启用回送设置<br>最短回发时间: 10 ms<br>失败回送帧<br>ID:0x 0 CAN ▼ 标准帧 ▼ |   |
| ·<br>转发模式: FIFO ▼<br>确定 取消                                        |   |

图 4.9 高级设置

产品用户手册

CAN(FD)bus 智能网桥

- 转发模式:提供 FIFO 模式和实时模式两种选择。FIFO 模式使用外部 RAM,提供更大的缓存容量,可以缓存 45000 帧。实时模式使用芯片内部 RAM,容量小但速度更快。
- **失败回送设置**: 设置使能后 CANFDBridge 转发失败时,会发送指定帧来告知发送方转 发失败。示意图如图 4.10 所示。



#### 图 4.10 失败回送示意图

回送帧可设置帧 ID、帧类型(标准帧/扩帧帧)、CAN 数据帧或 CANFD 数据帧。回送 帧数据长度固定 2 字节,第一个字节表示 CAN0 通道错误状态,第二个字节表示 CAN1 通 道错误状态,通道错误状态定义如下:

0x00: 总线无错误;

ZLG 致远电子

- 0x01: 总线错误主动状态;
- 0x02: 总线错误被动状态;
- 0x03: 总线关闭;

### 4.3.2 失败回送示例

| CAN0     |       |   |       |  |
|----------|-------|---|-------|--|
| 📝 启用回送设置 |       |   |       |  |
| 最短回发时间:  | 10 ms |   |       |  |
| - 失败回送帧  |       |   |       |  |
| ID:0x E0 | CAN   | - | 标准帧 🔹 |  |
|          |       |   |       |  |

#### 图 4.11 CANO 通道失败回送设置

示例使用 USBCANFD-200U 的 CAN0 连接 CANFDBridge 的 CAN0 通道, CAN1 通道 不连接,故意造成转发错误。根据如图 4.11 所示配置, CANFDBridge 从 CAN0 通道接收 到 USBCANFD-200U 通道 0 发出的 CANFD 报文。因为 CAN1 未连接,所以 CANFDBridge 将报文从 CAN1 通道转发出去时发生错误,此时如图 4.12 所示,USBCANFD-200U 的通道 0 会收到一个 ID 为 0xE0 的 CAN 标准数据帧,第二字节数据为 0x02,表示 CAN1 通道转发 时发生总线被动错误。

| 中贞エD       | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方向  | 帧类型  | 帧格式  | CAN类型   | 长度 | 数据                                                                                                 |
|------------|---------------|-----|-----|--------------|-----|------|------|---------|----|----------------------------------------------------------------------------------------------------|
|            |               |     |     |              | 全 🔻 | 全部 🔻 | 全部 🔻 | 全部 🔻    |    |                                                                                                    |
| 0x00000001 | USBCANFD-200V | 设备0 | 通道0 | 15:57:57.547 | 发送  | 标准帧  | 数据帧  | CANFD加速 | 64 | 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10<br>11 12 13 14 15 16 17 18 00 00 00 00 00 00 00 00 |
| 0x000000E0 | USBCANFD-200U | 设备0 | 通道0 | 15:57:57.575 | 接收  | 标准帧  | 数据帧  | CAN     | 2  | 00 02                                                                                              |

#### 图 4.12CAN1 通道转发失败,错误值 0x02

每个通道都支持设置基础转发, CANFDBridge 基础转发可实现 CAN 转 CAN、CANFD

| 产 | 品 | 用 | 户手 | ₽册 |
|---|---|---|----|----|
|---|---|---|----|----|

CAN (FD) bus 智能网桥

转 CANFD、CAN 转 CANFD、CANFD 转 CAN 等功能。基础转发设置的转发规则即为默认的转发规则,当接收的报文不符合帧映射、合并、拆分等规则时,按照基础转发的规则来转发。基础转发根据 CAN 控制器类型的选择提供默认转发设置和对转发设置做限制,如表 4.1 所示。如果默认设置的转发规则不符合用户需求时,用户可手动选择合适的转发设置。通过

点击 基础转发高级设置 按键进入配置界面,界面如图 4.13 所示。

ZLG 致远电子

| 接收端控<br>制器类型 | 发送端控<br>制器类型 | 接收 CAN 转<br>CAN | 接收 CAN 转<br>CANFD | 接收 CANFD 转<br>CAN | 接收 CANFD<br>转 CANFD |
|--------------|--------------|-----------------|-------------------|-------------------|---------------------|
| CAN          | CAN          | 默认设置            | 禁止设置              | 禁止设置              | 禁止设置                |
| CAN          | CANFD        | 用户可选择设置         | 默认设置              | 禁止设置              | 禁止设置                |
| CANFD        | CAN          | 默认设置            | 禁止设置              | 默认设置              | 禁止设置                |
| CANFD        | CANFD        | 默认设置            | 用户可选择设置           | 用户可选择设置           | 默认设置                |

#### 表 4.1 默认转发和转发限制表

| 基础转发高级设置                          | x                                 |
|-----------------------------------|-----------------------------------|
| CANO<br>接收到CAN中如寸<br>CAN> CAN *   | 1                                 |
| 接收到CANFD中加寸<br>CANFD> CAN         | 2                                 |
| CAN1<br>接收到CAN中해时<br>CAN> CANFD * | CANFD数据长度: 64 × CANFD填充字节:0x FF 3 |
| CANFD> CANFD *                    | 4                                 |
|                                   | 确定取消                              |

#### 图 4.13 基础转发设置

- 可设置 CAN 转 CANFD 或 CAN(如①设置接收到 CAN 后转成 CAN 帧),及 CANFD 转 CANFD 或 CAN (如②设置接收到 CANFD 后转成 CAN 帧);
- 当在 CAN→CAN、CANFD→CANFD 时不改变帧数据;
- ▶ 若选择 CAN 转 CANFD,转发规则如下(如③中配置所示):
  - 在不勾选【填充】时, CAN 报文数据是多少转成的 CANFD 报文的数据也是 多少,保持不变。
  - 勾选【填充】后,可设置 CANFD 报文数据长度 DLC 和设置填充数据,默认 填充 0。设置后,当 CAN 报文数据长度等于 8 字节时,会用填充数据将 CANFD 报文填充至设置的 CANFD 报文数据长度。当 CAN 帧数据长度为 0~7 时填充 无效,转换后的 CANFD 帧数据长度与 CAN 帧数据长度一样;
  - 可设置 CANFD 报文是否位速率加速(BRS 位);
- 若选择 CANFD 转 CAN,如果 CANFD 报文数据长度大于 8 字节,则截断 CANFD 报文,仅保留前 8 个字节转发(帧类型不变)。

## 4.3.3 基础转发示例

产品用户手册

ZLG 致远电子

CAN (FD) bus 智能网桥

示例使用 USBCANFD-200U 与 CANFDBridge 对接(CAN0 接 CAN0, CAN1 接 CAN1), 将发送的 CAN(FD)帧和经 CANFDBridge 转换后发回的 CAN(FD)帧进行对比。

## 1. 接收 CAN 转 CAN

如图 4.13 中①所示,设置 CAN0 接收 CAN 转 CAN,不改变帧数据。

| фдір       | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方  | 向 | 帧类型 |   | 帧格式 |    | 裕式 CAN类型 |   | 长度 | 数据                      |
|------------|---------------|-----|-----|--------------|----|---|-----|---|-----|----|----------|---|----|-------------------------|
|            |               |     |     |              | 全· | • | 全部  | • | 全部  | •  | 全部       | • |    |                         |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道0 | 17:47:30.425 | 发送 |   | 标准帧 | ų | 数据帧 | ţ, | CAN      |   | 8  | 00 11 22 33 44 55 66 77 |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道1 | 17:47:30.434 | 接收 |   | 标准帧 | ţ | 数据帧 | þ. | CAN      |   | 8  | 00 11 22 33 44 55 66 77 |

#### 图 4.14 CAN 转 CAN 示例

### 2. 接收 CANFD 转 CAN

如图 4.13 中②所示,设置 CAN0 接收 CANFD 转 CAN,CANFD 报文数据长度大于 8,则截断 CANFD 报文,仅保留前 8 个字节转发(帧类型不变)。

| φġID       | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方向  | 帧类型  | 帧格式  | CAN类型 | 长度 | 数据                                                                |
|------------|---------------|-----|-----|--------------|-----|------|------|-------|----|-------------------------------------------------------------------|
|            |               |     |     |              | 全 🔻 | 全部 🔻 | 全部 🔻 | 全部 🔻  |    |                                                                   |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道0 | 17:44:55.514 | 发送  | 标准帧  | 数据帧  | CANFD | 64 | 00 11 22 33 44 55 66 77 88 99 00 00 00 00 00 00 00 00 00 00 00 00 |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道1 | 17:44:55.528 | 接收  | 标准帧  | 数据帧  | CAN   | 8  | 00 11 22 33 44 55 66 77                                           |

#### 图 4.15 CANFD 转 CAN 示例(DLC 大于 8)

| фдір       | 源设备类型         | 源设备 | 源通道 | 时间标识         | ŕ. | 向 | 」  帧类型 |   | 帧格式 |    | CAN类型 |   | 长度 | 数据             |
|------------|---------------|-----|-----|--------------|----|---|--------|---|-----|----|-------|---|----|----------------|
|            |               |     |     |              | 全  | ٠ | 全部     | • | 全部  | ٠  | 全部    | • |    |                |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道0 | 09:22:42.358 | 发送 | ź | 标准     | ф | 数据帧 | ţ, | CANFD |   | 5  | 00 11 22 33 44 |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道1 | 09:22:42.377 | 淁  | k | 标准     | ф | 数据帧 | ţ, | CAN   |   | 5  | 00 11 22 33 44 |

图 4.16 CANFD 转 CAN 示例(DLC 小于 8)

#### 3. 接收 CAN 转 CANFD

如图 4.13 中③所示,设置 CAN1 接收 CAN 后转 CANFD,转换的 CANFD 长度为 64, 填充数据为 0xFF,开启数据域波特率加速。

| фдір       | 源设备类型         | 源设备 | 源通道 | 时间标识         | ŕ. | 方向 |    | 帧类型 |    | 帧格式 |       | 쾨 | 长度 | 数据                                                                |
|------------|---------------|-----|-----|--------------|----|----|----|-----|----|-----|-------|---|----|-------------------------------------------------------------------|
|            |               |     |     |              | 全  | •  | 全部 | •   | 全部 | •   | 全部    | • |    |                                                                   |
| 0x00000001 | USBCANFD-200V | 设备0 | 通道1 | 17:48:53.537 | 发送 | È  | 标准 | 贞   | 数据 | ф   | CAN   |   | 8  | 00 11 22 33 44 55 66 77                                           |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道0 | 17:48:53.544 | 接收 | Þ  | 标准 | 岐   | 数挪 | ф   | CANFD | 速 | 64 | 00 11 22 33 44 55 66 77 FF FF FF FF FF FF<br>FF FF FF FF FF FF FF |

#### 图 4.17 CAN 转 CANFD 示例

### 4. 接收 CANFD 转 CANFD

如图 4.13 中④所示,设置 CAN1 接收 CANFD 后转 CANFD,不改变帧数据。

| ΦдІЛ       | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方向  | 帧类型  | 帧格式  | CAN类型 | 长度 | 数据                                                                      |
|------------|---------------|-----|-----|--------------|-----|------|------|-------|----|-------------------------------------------------------------------------|
|            |               |     |     |              | 全 🔻 | 全部 🔻 | 全部 🔻 | 全部 🔻  |    |                                                                         |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道1 | 17:46:05.434 | 发送  | 标准帧  | 数据帧  | CANFD | 64 | 00 11 22 33 44 55 66 77 88 99 00 00 00 00 00 00 00 00 00 00 00 00       |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道0 | 17:46:05.438 | 接收  | 标准帧  | 数据帧  | CANFD | 64 | 00 11 22 33 44 55 66 77 88 99 00 00 00 00<br>00 00 00 00 00 00 00 00 00 |

### 图 4.18 CANFD 转 CANFD 示例

4.3.4 滤波

产品用户手册

CAN (FD) bus 智能网桥

CANFDBridge 具有硬件执行验收过滤的能力,选择性接收 CAN(FD)报文,能够最大程度上减少自网络的网络负担,设置验收滤波时,切换至滤波设置选项卡,如图 4.19 所示。 在【通道】中选择要设置的 CAN 通道。在【开启滤波】选项前打钩使能验收滤波功能。 CANFDBridge 的滤波模式为白名单滤波,使能滤波后,只接收滤波表中各滤波项 ID 范围内 的 CAN(FD)报文。注意如果勾选使能了滤波,但滤波表中还没滤波项,此时会过滤所有报 文。每个通道滤波项的设置个数最大为 64 个。

【过滤格式】可选择单 ID 滤波和组 ID 滤波两类滤波格式,单 ID 表示只设置一个 ID,此时只有【起始帧 ID】有效。组 ID 表示设置【起始帧 ID】和【结束帧 ID】来确定一个 ID 范围,此时只有 ID 满足这个范围的才会被接收。

例:如图 4.19 所示,设置了 CAN0 通道验收标准帧单 ID 为 0x08、0x12,扩展帧组 ID 为 0x55 到 0x66,标准帧组 ID 为 0x22 到 0x66。则 CANFDBridge 的 CAN0 通道只接收 ID 为 0x08、0x12、0x22~0x66 的标准帧 CAN(FD)报文和 ID 为 0x55~0x66 的扩展帧 CAN(FD) 报文。

| 通道               | CAN0 1                               |                     |               |
|------------------|--------------------------------------|---------------------|---------------|
| 📝 开启滤            | 波                                    |                     |               |
| 索引               | 过滤格式                                 | 起始ID(HEX)           | 结束ID(HEX)     |
| 1<br>2<br>3<br>4 | 标准帧单ID<br>标准帧单ID<br>扩展帧组ID<br>标准帧组ID | 8<br>12<br>55<br>22 | 8<br>12<br>66 |
|                  |                                      |                     |               |
|                  |                                      |                     |               |
| 过滤格式             | 标准帧组ID                               | -                   |               |
| 起始帧ID:           | 0x 22                                | 结束帧ID: 0x           | 66            |
|                  | 添加                                   | 删除 清                | 空             |

#### 图 4.19 滤波参数设置

#### 4.3.5 帧映射

ZLG 致远电子

CANFDBridge 可设置帧映射功能,帧映射界面如图 4.20 所示,实现收到指定 CAN(FD) 帧后转发成指定 CAN(FD)帧发送。帧映射具体功能如下:

- 每路 CAN 通道支持帧映射条数为 64 条;
- 支持 CAN 类型(CAN/CANFD)、帧类型(标准帧/扩展帧)、格式(远程帧/数据帧)
   帧 ID、帧数据等映射,支持设置选择以上哪些匹配项不需要比较或更改,即在【源】
   中勾选的项才需要用来比较,不勾选则不作为比较项;对应【目标】中只有勾选的项才会修改,不勾选则不修改(即映射后保持接收帧的原始值)。



CAN (FD) bus 智能网桥

| 通    | 道: CANG | ) - |      |     |    |         |         |
|------|---------|-----|------|-----|----|---------|---------|
| ☑ 使能 | Ì       | 添加  | 刪除   | 修   | 改  | 清空      | ↑ ↓     |
| 序号   | CAN类型   | 类型  | 格式   | DLC | 加速 | ID(HEX) | 数据(HEX) |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
|      |         |     |      |     |    |         |         |
| 4    |         | 1   | 1111 |     |    |         | +       |

#### 图 4.20 帧映射界面

每次此窗口表格中只显示一个通道的帧映射配置,通过【通道】下拉框可选择其他通道。 勾选【使能】后才能对帧映射参数进行编辑。

点击 **\*\*\*\***按钮可添加帧映射规则,并弹出窗口如图 4.21 所示,【源】用于设置接收到 的帧要与【源】中指定的匹配参数相同才会映射。【目标】表示若接收到的帧满足映射条件, 则将其映射为【目标】中所设置的帧。通过对各个参数的勾选可以设置哪些参数需要比较和 更改。

| 帧映射设置                                                                                       |
|---------------------------------------------------------------------------------------------|
| 源<br>CAN类型: CAN ▼ ▼ 帧类型: 标准帧 ▼ ▼ 格式: 数据帧 ▼ ▼ 长度: 8 ▼ ▼ 加速: 不转换 ▼<br>ID(HEX): ▼ Data(HEX): ▼ |
| 源: 0 00 00 00 00 00 00 00 00 00 00 00 00                                                    |
| 复选框勾选表示满足此条件进行匹配,同时勾选多个表示需要同时满足勾选条件。                                                        |
| 目标<br>CAN类型: CAN マダ 輸类型:标准帧 マダ 格式: 数据帧 マダ 长度: 8 マダ 加速:不转換 マダ                                |
| ID(HEX): 🔽 Data(HEX): 📝                                                                     |
| 目标: 0 00 00 00 00 00 00 00 00 00 00 00 00                                                   |
| 夏选框勾选表示将勾选的部分进行映射,未勾选表示采用源帧对应的数据。                                                           |
| 确定取消                                                                                        |

#### 图 4.21 帧映射设置

₩₩ 表示删除当前选中的映射规则。

**一**酸 表示修改当前选中的映射规则。

**章**表示清空当前表格中所有映射规则。

★ 表示上下移动当前选中的映射规则,映射规则序号越小则优先级更高,即一帧一旦满足了一个映射规则则不会继续检查其它映射规则了。

#### 4.3.6 帧映射示例

示例设置了两条 CAN0 的帧映射,如图 4.22 所示,第一条是 CAN 标准帧映射为 CANFD 扩展帧,进行数据映射;第二条是 CAN 标准帧映射为 CAN 标准帧,不进行数据映射。

```
产品用户手册
```



CAN(FD)bus 智能网桥

| 通    | 道: CANC | · · |     |      |      |         |                |
|------|---------|-----|-----|------|------|---------|----------------|
| 📝 使能 |         | 添加  | 刪除  | [ 修  | 改    | 清空      |                |
| 序号   | CAN类型   | 类型  | 格式  | DLC  | 加速   | ID(HEX) | 数据(HEX)        |
| 1    | CAN->C  | 标准帧 | 数据帧 | 8    | *->1 | 2->333  | 01 02 03 04 05 |
| 2    | CAN->C  | 标准帧 | 数据帧 | *->* | *->* | 1->222  | *->*           |
|      |         |     |     |      |      |         |                |

#### 图 4.22 两条帧映射

### 1. 使用数据映射

配置如图 4.23 所示,此设置将 ID 为 0x02、数据为 0x01、0x02、0x03、0x04、0x05、0x06、0x07、0x08 的 CAN 标准帧映射为 ID 为 0x333,数据为 0x11、0x22、0x33、0x44、0x55、0x66、0x77、0x88、0x99、0x10、0x11、0x12 的 CANFD 扩展帧。示例结果如图 4.24 所示。

| CAN类型               | CAN 👻      | 帧类型:标准帧 🔻 🗹 格式: 数据帧 🔽 🔽 长度: 8 🔽 🗸 加速: 不經   | 5换 🔽 🗸 |
|---------------------|------------|--------------------------------------------|--------|
|                     | ID(HEX): 🔽 | Data(HEX): 📝                               |        |
| 源                   | 2          | 01 02 03 04 05 06 07 08                    |        |
| CAN <sub>尖型</sub> : |            | 「顿类型:」打展帧 ▲ ② 格式: 数据帧 ▲ ③ 长度: 64 ▲ ② 加速:转移 | ų 🔹    |
| 日标                  | D(HEX): V  | Data(HEA): V                               |        |
| <b>H</b> 490-       | 333        | 11 22 33 44 33 66 77 66 33 10 11 12        |        |
| 复选框勾                | 洗表示将勾洗的部4  | \讲行映射,未勾洗表示采用源帖对应的数据。                      |        |

#### 图 4.23 使用数据映射

| фдір       | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方向  | 帧类型  | 帧格式  | CAN类型   | 长度 | 数据                                     |
|------------|---------------|-----|-----|--------------|-----|------|------|---------|----|----------------------------------------|
|            |               |     |     |              | 全 🔻 | 全部 🔻 | 全部 🔻 | 全部 🔻    |    |                                        |
| 0x0000002  | USBCANFD-200U | 设备0 | 通道0 | 17:25:52.547 | 发送  | 标准帧  | 数据帧  | CAN     | 8  | 01 02 03 04 05 06 07 08                |
| 0x00000333 | USBCANFD-200U | 设备0 | 通道1 | 17:25:55.867 | 接收  | 扩展帧  | 数据帧  | CANFD加速 | 12 | 11 22 33 44 55 66 77 88 99 10 11<br>12 |

## 图 4.24 使用数据映射示例

#### 2. 不映射数据

如图 4.25 所示, 红色框框处不勾选, 表示不进行比较或改动。所以此设置将 ID 为 0x01 的 CAN 标准数据帧转换为 ID 为 0x222 的 CAN 标准数据帧, 数据内容保持不变。

| 帧映射设置 :                                                                                      | x |
|----------------------------------------------------------------------------------------------|---|
| 源<br>CAN类型: CAN ▼ ☑ 帧类型:标准帧 ▼ ☑ 格式: 数据帧 ▼ ☑ 长度: 8 ▼ □ 加速: 不转换 ▼ ☑<br>ID(HEX): ☑ Data(HEX): □ |   |
| 源: 1 00 00 00 00 00 00 00 00 00 00 00 00 0                                                   |   |
| 复选框勾选表示满足此条件进行匹配,同时勾选多个表示需要同时满足勾选条件。                                                         |   |
| 目标<br>CAN类型: CAN ママ 輸类型: 标准帧 ママ 格式: 数据帧 ママ 长度: 8 マ 回 加速: 不转換 ママ                              | 1 |
| ID(HEX): マ     Data(HEX): □       目标:     222     00 00 00 00 00 00 00                       |   |
| 复选框勾选表示将勾选的部分进行映射,未勾选表示采用源帧对应的数据。                                                            |   |
| 确定取消                                                                                         |   |

#### 图 4.25 不映射数据

| 产 | 品 | 用」 | 户引 | ₣册 |
|---|---|----|----|----|
|---|---|----|----|----|



CAN (FD) bus 智能网桥

| фдір       | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方向  | 帧类型  | 帧格式  | CAN类 | 型 | 长度 | 数据                      |
|------------|---------------|-----|-----|--------------|-----|------|------|------|---|----|-------------------------|
|            |               |     |     |              | 全 🔻 | 全部 🔻 | 全部 🔻 | 全部   | ۲ |    |                         |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道0 | 16:38:40.280 | 发送  | 标准帧  | 数据帧  | CAN  |   | 8  | 00 11 22 33 44 55 66 77 |
| 0x00000222 | USBCANFD-200U | 设备0 | 通道1 | 16:38:40.289 | 接收  | 标准帧  | 数据帧  | CAN  |   | 8  | 00 11 22 33 44 55 66 77 |

#### 图 4.26 不映射数据示例

## 4.3.7 合并

合并功能用于将多个 CAN 报文合并后转换为 CANFD 报文,具体如下:

- 设备最多支持设置 64 条合并规则。设备根据合并规则,将接收到的 CAN 报文根据帧 ID、帧类型按顺序合并成对应 CANFD 帧发送;
- 设备将符合合并规则的 CAN 报文以保持型方式缓存起来,直到收到与合并规则中最后一个 CAN 帧 ID 相同的 CAN 报文时,将之前缓存的 CAN 报文合并成 CANFD 报文发出。即触发合并转发的条件是设备对应端口接收到的 CAN 报文 ID 与一条合并规则中最后一个 CAN 帧 ID 一致;
- 合并规则中的所有 CAN 帧 ID 不允许重复,映射的 CANFD 帧 ID 可重复;
- 一条合并规则中目标 CANFD 帧数据长度必须大于等于所有 CAN 帧数据长度总和;
- 一条合并规则中,若多个CAN 报文的数据长度加起来小于对应的CANFD 帧长度, 允许填充至设定 CANFD 长度,填充数据由用户设定。

合并界面布局和按键功能与帧映射类似,唯一不同的是点击 <sup>3</sup>按钮后弹出的是合并 项设置窗口,如图 4.27 所示。

| 合并                            | x  |
|-------------------------------|----|
| CANFD                         | _  |
| ID:0x 0 帧类型: 标准帧 ▲ 図加速        | 2  |
| CANFD数据长度: 64 CANFD填充字节:0x 00 |    |
| CAN                           |    |
|                               |    |
|                               |    |
|                               | -  |
|                               |    |
|                               |    |
|                               | _  |
|                               |    |
|                               |    |
|                               | _] |
| 福宁 取消                         |    |
| NGAE 4X/FI                    |    |

图 4.27 合并项设置

CANFD 框中的参数项表示要合并的目标 CANFD,可指定帧 ID、帧类型、数据长度和 填充字节,以及使能位速率切换。

CAN 框中表格表示待合并的 CAN 列表, 点击 <sup>3</sup> 弹出如图 4.28 所示待合并 CAN 设置窗口,设置完后即可添加一条待合并 CAN 到列表中,最多将 8 个 CAN 报文合并成一个 CANFD 报文。



CAN(FD)bus 智能网桥

| CAN       | x          |
|-----------|------------|
| ID:0x 0   | 帧类型: 标准帧 🔪 |
| 帧格式:数据帧 🔽 | 数据长度: 8 🔹  |
| ОК        | Cancel     |

图 4.28 待合并 CAN 设置

## 4.3.8 合并示例

设置如图 4.29 所示,此设置使 CAN0 将 ID 为 0x01、 0x02、 0x03 的三个数据长度为 8 的标准 CAN 帧合并成 ID 为 0x123,数据长度为 24 的 CANFD 标准帧。

| 合并<br>CANFD<br>D:0x 123<br>CANFD数据长度:<br>CAN | 24 -                     | 帧类型: 标准<br>CANFD填                          | 帧 ▼                                          | × |
|----------------------------------------------|--------------------------|--------------------------------------------|----------------------------------------------|---|
| 添加 刪將<br><u>索引 ⅠD</u><br>1 1<br>2 2<br>3 3   | 长度  <br>8<br>8<br>8<br>8 | 清空       帧类型       标准帧       标准帧       标准帧 | ↑ ↓<br>• • • • • • • • • • • • • • • • • • • |   |
|                                              | 确定                       | ĮĮ,                                        | 肖                                            |   |

图 4.29 合并三个 CAN 设置

当 CAN0 接收到符合组包规则的三个 CAN 帧后,合并成 CANFD 帧从 CAN1 发出。 CANFD 帧的数据为三个 CAN 帧的数据合并而成。

| фдір       | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方向  | 帧类型  | 帧格式  | CAN类型   | 长度 | 数据                                                                      |
|------------|---------------|-----|-----|--------------|-----|------|------|---------|----|-------------------------------------------------------------------------|
|            |               |     |     |              | 全 🔻 | 全部 🔻 | 全部 🔻 | 全部 🔻    |    |                                                                         |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道0 | 08:46:55.431 | 发送  | 标准帧  | 数据帧  | CAN     | 8  | 01 02 03 04 05 06 07 08                                                 |
| 0x00000002 | USBCANFD-200U | 设备0 | 通道0 | 08:46:55.431 | 发送  | 标准帧  | 数据帧  | CAN     | 8  | O9 OA OB OC OD OE OF 10                                                 |
| 0x00000003 | USBCANFD-200V | 设备0 | 通道0 | 08:46:55.431 | 发送  | 标准帧  | 数据帧  | CAN     | 8  | 11 12 13 14 15 16 17 18                                                 |
| 0x00000123 | USBCANFD-200U | 设备0 | 通道1 | 08:46:55.433 | 接收  | 标准帧  | 数据帧  | CANFD加速 | 24 | 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 |

#### 图 4.30 合并三个 CAN 示例

当收到合并规则的最后一包 CAN 帧就会将之前缓存的 CAN 帧组成 CANFD 帧发出, 如图 4.31 所示, 收到最后一包 ID 为 0x03 的 CAN 帧后, 马上发出合并后的 CANFD 帧。前 16 字节数据为之前缓存的数据。



CAN(FD)bus 智能网桥

| μάτο       | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方向  | 帧类型  | 帧格式  | CAN类型   | 长度 | 数据                                                                         |
|------------|---------------|-----|-----|--------------|-----|------|------|---------|----|----------------------------------------------------------------------------|
|            |               |     |     |              | 全 🔻 | 全部 🔻 | 全部 🔻 | 全部 🔻    |    |                                                                            |
| 0x0000003  | USBCANFD-200U | 设备0 | 通道0 | 08:50:46.447 | 发送  | 标准帧  | 数据帧  | CAN     | 8  | 11 12 13 14 15 16 17 18                                                    |
| 0x00000123 | USBCANFD-200U | 设备0 | 通道1 | 08:50:46.449 | 接收  | 标准帧  | 数据帧  | CANFD加速 | 24 | 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10<br>11 12 13 14 15 16 17 18 |

图 4.31 只接收最后一包示例

设置如图 4.32 所示,此设置使 CAN0 将 ID 为 0x10、 0x11、 0x12 的三个数据长度 8 的标准 CAN 帧合并成 ID 为 0x234,数据长度为 64 的 CANFD 标准帧,前面 24 字节数据为 三个 CAN 帧的数据合并而成,后面的 40 字节数据为自动填充字节 0xFF。

| 合并         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | x |  |  |  |  |  |  |  |
|------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|--|--|--|--|--|--|--|
| CANFD      |                                 | 帧类型: 标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 帧 🔹 🔽 加速 |   |  |  |  |  |  |  |  |
| CANFD数据    | CANFD数据长度: 64 Y CANFD填充字节:0x FF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |   |  |  |  |  |  |  |  |
| CAN        | HHBA (f                         | えい 清空 わたい おんしょう おんしょう ひょうしん ひょう ひょうしん ひょう |          |   |  |  |  |  |  |  |  |
| 索引         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 帧格式      |   |  |  |  |  |  |  |  |
| 2 1<br>3 1 | 0 8<br>1 8<br>2 8               | 标准帧<br>标准帧<br>标准帧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 数据帧数据帧   |   |  |  |  |  |  |  |  |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |   |  |  |  |  |  |  |  |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |   |  |  |  |  |  |  |  |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |   |  |  |  |  |  |  |  |
|            | 确定                              | 取                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 肖        |   |  |  |  |  |  |  |  |

图 4.32 合并 CAN 总长度小于 CANFD

如图 4.33 所示,合并后发出的 CANFD 帧数据从第 25 字节开始都是自动填充的数据 0xFF。

| ффіт       | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方向  | 帧类型  | 帧格式  | CAN类型   | 长度 | 数据                                                                                                             |
|------------|---------------|-----|-----|--------------|-----|------|------|---------|----|----------------------------------------------------------------------------------------------------------------|
|            |               |     |     |              | 全 🔻 | 全部 🔻 | 全部 🔻 | 全部 🔻    |    |                                                                                                                |
| 0x00000010 | USBCANFD-200U | 设备0 | 通道0 | 08:49:33.718 | 发送  | 标准帧  | 数据帧  | CAN     | 8  | 01 02 03 04 05 06 07 08                                                                                        |
| 0x00000011 | USBCANFD-200U | 设备0 | 通道0 | 08:49:33.719 | 发送  | 标准帧  | 数据帧  | CAN     | 8  | O9 OA OB OC OD OE OF 10                                                                                        |
| 0x00000012 | USBCANFD-200U | 设备0 | 通道0 | 08:49:33.719 | 发送  | 标准帧  | 数据帧  | CAN     | 8  | 11 12 13 14 15 16 17 18                                                                                        |
| 0x00000234 | USBCANFD-200U | 设备0 | 通道1 | 08:49:33.731 | 接收  | 标准帧  | 数据帧  | CANFD加速 | 64 | 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 FF FF FF FF FF FF FF FF FF $^{\rm rr}$ |

图 4.33 合并 CAN 总长度小于 CANFD 示例

## 4.3.9 拆分

拆分功能用于将 CANFD 报文拆分成多个 CAN 报文发送,设备最多支持设置 64 条拆分规则,每条规则指定待拆分 CANFD 的帧 ID、帧类型及帧长度。设置接收到对应 CANFD 报文后,按设置的目标帧 ID、帧类型拆为多个 CAN 报文。指定的被拆分的 CANFD 帧 ID 不允许重复。CANFD 帧数据长度必须大于或等于拆分规则中所有 CAN 帧数据长度总和。

拆分界面布局和按键功能与合并类似,点击 <sup>添加</sup>按钮后弹出的是拆分项设置窗口,如 图 4.34 所示。



CAN(FD)bus 智能网桥

| 分<br>- CANED            |               |        | 2          |
|-------------------------|---------------|--------|------------|
| ID:0x 0<br>CANFD数据长度: 6 | 帧类型:<br>4 🔺   | 标准帧 👗  | ☑ 加速       |
| CAN                     | 修改 (<br>後一帧类型 | 清空 ↓ ↑ | ) <b>+</b> |
|                         |               |        |            |
|                         | 确定 (          | 取消     |            |

图 4.34 拆分配置项

CANFD 框中的参数项表示待拆分的源 CANFD,可指定帧 ID、帧类型、数据长度和填充字节,以及使能位速率切换。

CAN 框中表格表示拆分目标的 CAN 列表,点击 <sup>3</sup>加 弹出如图 4.35 所示拆分目标 CAN 设置窗口,设置完后即可添加一条拆分目标 CAN 到列表中,最多将一个 CANFD 报文拆分 成 8 个 CAN 报文。

| CAN       | x          |
|-----------|------------|
| ID:0x 0   | 帧类型: 标准帧 🔹 |
| 帧格式:数据帧 🔻 | 数据长度: 8 💌  |
| ОК        | Cancel     |

图 4.35 待合并 CAN 设置

## 4.3.10 拆分示例

如图 4.36 所示设置,此设置将 ID 为 0xF1,长度为 64 字节的 CANFD 标准帧拆分为 8 个数据长度为 8 字节的 CAN 标准帧, ID 分别为 0x00~0x07。

| 拆分                         |           |         |        |         | x  |
|----------------------------|-----------|---------|--------|---------|----|
| CANFD<br>ID:0x F1<br>CANFD | 」<br>如据长度 | ₹: 64 · | 帧类型: 材 | 記准帧 🔻 🔽 | 加速 |
| CAN —                      | ₩         | 除       | 修改 清雪  | 2 1     | ¥  |
|                            | ID        | 长度      | 帧类型    | 帧格式     |    |
| 1                          | 0         | 8       | 标准帧    | 数据帧     |    |
| 2                          | 1         | 8       | 标准帧    | 数据帧     |    |
| 3                          | 2         | 8       | 标准帧    | 数据帧     |    |
| 4                          | 3         | 8       | 标准帧    | 数据帧     |    |
| 5                          | 4         | 8       | 标准帧    | 数据帧     |    |
| 6                          | 5         | 8       | 标准帧    | 数据帧     |    |
| 7                          | 6         | 8       | 标准帧    | 数据帧     |    |
| 8                          | 7         | 8       | 标准帧    | 数据帧     |    |
|                            |           | 75.~    |        | TT CAL  |    |
|                            | l         | 佣定      |        | 取泪      |    |

图 4.36 64 字节 CANFD 拆分 8 个 8 字节 CAN 设置

产品用户手册

CAN(FD)bus 智能网桥

如图 4.37 所示,当 CAN0 通道收到 ID 为 0xF1,数据长度为 64 的 CANFD 标准帧后,将其按拆包规则拆分为 8 个 CAN 标准帧从 CAN1 通道发出。

| фдтр       | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方向  | 帧类型  | 帧格式  | CAN类型   | 长度 | 数据                                                                                                |
|------------|---------------|-----|-----|--------------|-----|------|------|---------|----|---------------------------------------------------------------------------------------------------|
|            |               |     |     |              | 全 🔻 | 全部 🔻 | 全部 🔻 | 全部 🔻    |    |                                                                                                   |
| 0x000000F1 | USBCANFD-200U | 设备0 | 通道0 | 11:20:25.046 | 发送  | 标准帧  | 数据帧  | CANFD加速 | 64 | 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10<br>11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F … |
| 0x00000000 | USBCANFD-200V | 设备0 | 通道1 | 11:20:28.052 | 接收  | 标准帧  | 数据帧  | CAN     | 8  | 01 02 03 04 05 06 07 08                                                                           |
| 0x00000001 | USBCANFD-200U | 设备0 | 通道1 | 11:20:28.052 | 接收  | 标准帧  | 数据帧  | CAN     | 8  | O9 OA OB OC OD OE OF 10                                                                           |
| 0x0000002  | USBCANFD-200V | 设备0 | 通道1 | 11:20:28.052 | 接收  | 标准帧  | 数据帧  | CAN     | 8  | 11 12 13 14 15 16 17 18                                                                           |
| 0x0000003  | USBCANFD-200U | 设备0 | 通道1 | 11:20:28.052 | 接收  | 标准帧  | 数据帧  | CAN     | 8  | 19 1A 1B 1C 1D 1E 1F 20                                                                           |
| 0x00000004 | USBCANFD-200U | 设备0 | 通道1 | 11:20:28.052 | 接收  | 标准帧  | 数据帧  | CAN     | 8  | 21 22 23 24 25 26 27 28                                                                           |
| 0x00000005 | USBCANFD-200U | 设备0 | 通道1 | 11:20:28.052 | 接收  | 标准帧  | 数据帧  | CAN     | 8  | 29 2A 2B 2C 2D 2E 2F 30                                                                           |
| 0x0000006  | USBCANFD-200U | 设备0 | 通道1 | 11:20:28.052 | 接收  | 标准帧  | 数据帧  | CAN     | 8  | 31 32 33 34 35 36 37 38                                                                           |
| 0x00000007 | USBCANFD-200U | 设备0 | 通道1 | 11:20:28.052 | 接收  | 标准帧  | 数据帧  | CAN     | 8  | 39 3A 3B 3C 3D 3E 3F 40                                                                           |

图 4.3764 字节 CANFD 拆分 8 个 8 字节 CAN 示例

如图 4.38 所示设置,此设置将 ID 为 0xF2,长度为 24 字节的 CANFD 标准帧拆分为 4 个数据长度为 6 字节的 CAN 标准帧, ID 分别为 0x10~0x13。

| 拆分              |                                         |                  | ×    |  |  |  |  |  |  |  |
|-----------------|-----------------------------------------|------------------|------|--|--|--|--|--|--|--|
| CANFD           |                                         |                  |      |  |  |  |  |  |  |  |
| ID:0x F2        | 帧类型:                                    | 标准帧 🚬 [          | ✔ 加速 |  |  |  |  |  |  |  |
| CANFD数据长度: 24 × |                                         |                  |      |  |  |  |  |  |  |  |
| CAN             |                                         |                  |      |  |  |  |  |  |  |  |
| 添加 删除           | 1 修改 1                                  | 清空               | ¥    |  |  |  |  |  |  |  |
| 索引 ID           | 长度 帧类型                                  | 帧格式              |      |  |  |  |  |  |  |  |
| 1 10            | 6<br>标准帧                                | 数据帧              |      |  |  |  |  |  |  |  |
| 3 12            | ▶ 标准顺                                   | 委订括中页<br>※行 据 市占 |      |  |  |  |  |  |  |  |
| 4 13            | 6 标准帧                                   | 数据帧              |      |  |  |  |  |  |  |  |
|                 |                                         |                  |      |  |  |  |  |  |  |  |
|                 |                                         |                  |      |  |  |  |  |  |  |  |
|                 |                                         |                  |      |  |  |  |  |  |  |  |
|                 |                                         |                  |      |  |  |  |  |  |  |  |
|                 |                                         |                  |      |  |  |  |  |  |  |  |
|                 |                                         | we take          |      |  |  |  |  |  |  |  |
|                 | ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 取消               |      |  |  |  |  |  |  |  |

图 4.38 24 字节 CANFD 拆分为 4 个 6 字节 CAN 设置

如图 4.39 所示,当 CAN0 通道收到 ID 为 0xF2,数据长度为 24 的 CANFD 标准帧后,将其按拆包规则拆分为 4 个 CAN 标准帧从 CAN1 通道发出。

| фдір       | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方向   | 帧类型  | 帧格式  | CAN类型   | 长度 | 数据                                                                         |
|------------|---------------|-----|-----|--------------|------|------|------|---------|----|----------------------------------------------------------------------------|
|            |               |     |     |              | 全· 🔻 | 全部 🔻 | 全部 🔻 | 全部 🔻    |    |                                                                            |
| 0x000000F2 | USBCANFD-200U | 设备0 | 通道0 | 11:22:00.590 | 发送   | 标准帧  | 数据帧  | CANFD加速 | 24 | 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E OF 10<br>11 12 13 14 15 16 17 18 |
| 0x00000010 | USBCANFD-200U | 设备0 | 通道1 | 11:22:00.593 | 接收   | 标准帧  | 数据帧  | CAN     | 6  | 01 02 03 04 05 06                                                          |
| 0x00000011 | USBCANFD-200U | 设备0 | 通道1 | 11:22:00.593 | 接收   | 标准帧  | 数据帧  | CAN     | 6  | 07 08 09 0A 0B 0C                                                          |
| 0x00000012 | USBCANFD-200U | 设备0 | 通道1 | 11:22:00.593 | 接收   | 标准帧  | 数据帧  | CAN     | 6  | OD OE OF 10 11 12                                                          |
| 0x00000013 | USBCANFD-200U | 设备0 | 通道1 | 11:22:00.593 | 接收   | 标准帧  | 数据帧  | CAN     | 6  | 13 14 15 16 17 18                                                          |

图 4.3924 字节 CANFD 拆分为 4 个 6 字节 CAN 示例

此设置将 ID 为 0xF3,长度为 64 字节的 CANFD 标准帧拆分为两个数据长度为 8 字节的 CAN 标准帧和一个数据长度为 4 字节的 CAN 标准帧, ID 分别为 0x00~0x02。只拆分 CANFD 帧前 20 字节数据,多余的数据丢弃。

| 产品用 | 户手册 |
|-----|-----|
|-----|-----|

ZLG 致远电子



CAN(FD)bus 智能网桥

| 拆分 ×                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------|--|
| D:0x F3 帧类型:标准帧 ▼ ☑加速                                                                                 |  |
| CANFD数据长度: 64 *                                                                                       |  |
|                                                                                                       |  |
| CAN                                                                                                   |  |
| 添加 刪除 修改 清空 ↑ ↓                                                                                       |  |
| 索引   ID   长度   帧类型   帧格式                                                                              |  |
| 1         0         8         扩展帧         数据帧           2         1         8         扩展帧         数据帧 |  |
| 3 2 4 扩展帧 数据帧                                                                                         |  |
|                                                                                                       |  |
|                                                                                                       |  |
|                                                                                                       |  |
|                                                                                                       |  |
|                                                                                                       |  |
| 确定取消                                                                                                  |  |

图 4.40 64 字节 CANFD 拆分为 2 个 8 字节 CAN 设置

如图 4.41 所示,按拆包规则,只拆分前 20 字节数据,其余数据丢弃。

| фдір                | 源设备类型         | 源设备 | 源通道 | 时间标识         | 方向  | 帧类型  | 帧格式  | CAN类型   | 长度 | 数据                                                                                                    |
|---------------------|---------------|-----|-----|--------------|-----|------|------|---------|----|-------------------------------------------------------------------------------------------------------|
|                     |               |     |     |              | 全 🔻 | 全部 🔻 | 全部 🔻 | 全部 🔻    |    |                                                                                                       |
| 0x000000 <b>F</b> 3 | USBCANFD-200U | 设备0 | 通道0 | 11:25:37.950 | 发送  | 标准帧  | 数据帧  | CANFD加速 | 64 | 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F $\cdots$ |
| 0x00000000          | USBCANFD-200U | 设备0 | 通道1 | 11:25:37.970 | 接收  | 扩展帧  | 数据帧  | CAN     | 8  | 01 02 03 04 05 06 07 08                                                                               |
| 0x00000001          | USBCANFD-200U | 设备0 | 通道1 | 11:25:37.970 | 接收  | 扩展帧  | 数据帧  | CAN     | 8  | O9 OA OB OC OD OE OF 10                                                                               |
| 0x00000002          | USBCANFD-200U | 设备0 | 通道1 | 11:25:37.970 | 接收  | 扩展帧  | 数据帧  | CAN     | 4  | 11 12 13 14                                                                                           |

图 4.4164 字节 CANFD 拆分为 2 个 8 字节 CAN 示例

## 4.4 设备状态获取与上报

CANFDBridge 配置软件的状态界面如图 4.42 所示,它提供两个功能,分别是实时获取 CAN 通道错误计数和开启自动上报设备错误状态功能。这两个功能可用来分析设备在网络 上的适应情况,记录使用过程中出现的错误状况,便于分析原因。

| CAN0错<br>TX: | 误计数<br>RX: |    | CAN1错误计数<br>TX: RX: | 获    | 取错误计数 |   |
|--------------|------------|----|---------------------|------|-------|---|
| Ŧ            | 开始自动上报错    | 吴  | 停止自动上报错误            | 清    | 空     |   |
| 索引           | 时间         | 通道 | 错误类型                | 发送错误 | 接收错误  | Ĕ |
|              |            |    |                     |      |       |   |
|              |            |    |                     |      |       |   |
|              |            |    |                     |      |       |   |
|              |            |    |                     |      |       |   |
|              |            |    |                     |      |       |   |
|              |            |    |                     |      |       |   |
|              |            |    |                     |      |       |   |
|              |            |    |                     |      |       |   |
|              |            |    |                     |      |       |   |
|              |            |    |                     |      |       |   |
|              |            |    |                     |      |       |   |
| 4            |            |    |                     |      |       | • |

图 4.42 状态界面

产品用户手册



#### 4.4.1 获取设备 CAN 接口错误计数

点击如图 4.43 所示中的 按键 按钮即可实时读取一次 CAN 通道的接收错误计数和发送错误计数。这些错误计数直接反映了总线的通畅情况,当接收错误值大于 127 时,总线几 乎已经瘫痪。当出现错误值较高的情况(40 以上),表示总线的通讯出现比较严重的阻塞,此时就有必要调整网桥的波特率值或增加网桥的数量。当总线通信良好时,错误计数一般都能维持在 0。发送错误计数和接收错误计数类似。

| CANO错误计数 ——— | -CAN1错误计数    |        |
|--------------|--------------|--------|
| TX: 0 RX: 9  | TX: 0 RX: 64 | 获取错误计数 |

#### 图 4.43 获取错误计数

## 4.4.2 实时上报设备状态

如图 4.44 所示,点击<sup>开始自动上报错误</sup>按钮即开启自动上报错误功能,此时如果设备通信中 发生错误,就会自动把错误上报到电脑端,记录在表格中。记录时会记录下发生错误的时间 (以电脑时间为准)、通道号、错误类型、发送错误计数、接收错误计数和连续错误计数等 信息。通过这些信息可以方便地分析通讯出现的故障。

|    | 开始自动上报错误      | ]  | 停止自动上报错误  | 澤    | 腔    |   |
|----|---------------|----|-----------|------|------|---|
| 索引 | 时间            | 通道 | 错误类型      | 发送错误 | 接收错误 |   |
| 0  | 9-17 11:30:46 | 1  | 总线错误:未知错误 | 0    | 100  |   |
| 1  | 9-17 11:30:46 | 1  | 总线告警      | 0    | 100  | - |
| 2  | 9-17 11:30:46 | 1  | 总线错误:未知错误 | 0    | 127  |   |
| 3  | 9-17 11:30:46 | 1  | 总线消极      | 0    | 255  |   |
| 4  | 9-17 11:30:46 | 1  | 总线错误:未知错误 | 0    | 255  |   |
| 5  | 9-17 11:30:46 | 1  | 总线错误:格式错误 | 0    | 255  |   |
| 6  | 9-17 11:30:46 | 1  | 总线错误:未知错误 | 0    | 255  |   |
| 7  | 9-17 11:30:46 | 1  | 总线错误:格式错误 | 0    | 255  |   |
| 8  | 9-17 11:30:46 | 1  | 总线错误:未知错误 | 0    | 255  |   |
| 9  | 9-17 11:30:46 | 1  | 总线错误:格式错误 | 0    | 255  |   |
| 10 | 9-17 11:30:46 | 1  | 总线错误:未知错误 | 0    | 255  |   |
| 11 | 9-17 11:30:46 | 1  | 总线错误:格式错误 | 0    | 255  |   |
| 12 | 9-17 11:30:46 | 1  | 总线错误:未知错误 | 0    | 255  |   |
| 13 | 9-17 11:30:46 | 1  | 总线错误:格式错误 | 0    | 255  |   |
| 14 | 9-17 11:30:46 | 1  | 总线错误:未知错误 | 0    | 255  |   |
| 15 | 9-17 11:30:46 | 1  | 总线错误:格式错误 | 0    | 255  |   |
| 16 | 9-17 11:30:46 | 1  | 总线错误:未知错误 | 0    | 255  |   |
| 17 | 9-17 11:30:46 | 1  | 总线错误:格式错误 | 0    | 255  | • |
| 4  |               |    |           |      | )    | • |

图 4.44CAN 错误自动上报



# 5. 设备固件升级

为了提高设备的可维护性, CANFDBridge 提供 IAP 升级固件功能。使用 CANCfg 软件可以很方便地对 CANFDBridge 进行升级。软件中与升级功能相关的界面如图 5.1 中红框区域所示。点击 选择待升级固件的路径, 然后点击 <sup>圖件升级</sup>按钮即开始进行固件升级, 开始升级后会弹出如所图 5.2 示窗口提示升级进度和状态。在升级过程中, USB 指示灯 会快速闪烁, 在升级过程中注意不要异常断电或断开 USB 连接, 不然会导致升级失败。如果不小心导致升级失败, CANFDBridge 设备出现不能正常工作, USB 指示灯一直闪烁的现象。此时只需要重新连接好设备到电脑,进行一次正确的固件升级操作即可恢复正常。

| 基本信息 CAN 滤波 合并 拆分 帧映射 状态 |                 |
|--------------------------|-----------------|
| 设备信息                     |                 |
| 序列号:                     | <b>莽m</b> -沿各信自 |
| 硬件:                      |                 |
|                          |                 |
| Reationder               | 设备日志            |
| a) 99                    |                 |
|                          |                 |
| 秋秋设首简重                   | 血 1末仔细 五到 义 计   |
| 「西佐升級」                   |                 |
| 路径:                      |                 |
|                          |                 |
| 固件升级                     |                 |
|                          |                 |
|                          |                 |
|                          |                 |
|                          |                 |
|                          |                 |

图 5.1 固件升级

| 固件更新         |
|--------------|
|              |
| 更新状态: 固件更新成功 |
| 更新时间: 2.1s   |
| 更新进度: 100%   |
| 关闭           |

图 5.2 完成固件升级



CAN(FD)bus 智能网桥

# 6. 免责声明

本着为用户提供更好服务的原则,广州致远电子有限公司(下称"致远电子")在本手册 中将尽可能地为用户呈现详实、准确的产品信息。但介于本手册的内容具有一定的时效性, 致远电子不能完全保证该文档在任何时段的时效性与适用性。致远电子有权在没有通知的情 况下对本手册上的内容进行更新,恕不另行通知。为了得到最新版本的信息,请尊敬的用户 定时访问致远电子官方网站或者与致远电子工作人员联系。感谢您的包容与支持!

产品用户手册

广州致远电子股份有限公司

更多详情请访问

欢迎拨打全国服务热线 www.zlg.cn 400-888-4005

