

中华人民共和国国家计量技术规范

JJF 2138-2024

工业机器人校准规范

Calibration Specification for Industrial Robots

2024-09-18 发布

2025-03-18 实施

国家市场监督管理总局发布

录

引言	•••• (]])
1 范围	•••• (1)
2 引用文件	•••• (1)
3 术语和符号说明	•••• (1)
3.1 术语	•••• (1)
3.2 符号说明	•••• (2)
4 概述······	•••• (3)
5 计量特性······	•••• (4)
5.1 位姿准确度和位姿重复性	•••• (4)
5.2 多方向位姿准确度变动	•••• (4)
5.3 距离准确度和距离重复性	•••• (5)
5.4 位置稳定时间	•••• (5)
5.5 位置超调量	•••• (5)
5.6 位姿特性漂移	•••• (5)
5.7 路径准确度和路径重复性	•••• (5)
5.8 重复定向路径准确度	•••• (5)
5.9 拐角偏差	•••• (5)
5.10 路径速度特性	(6)
5.11 最小定位时间	(6)
5.12 静态柔顺性	(6)
5.13 振动加速度	(6)
5.14 末端抖动	(6)
5.15 固有频率	(6)
5.16 动刚度	(6)
6 校准条件	(6)
6.1 环境条件	(6)
6.2 校准用设备	•••• (7)
7 校准项目和校准方法	(8)
7.1 校准项目	(8)
7.2 校准方法	(8)
8 校准结果	•••• (31)
9 复校时间间隔	(32)
附录 A 校准前准备工作	(33)
附录 B 振动数据处理示例	•••• (42)
附录 C 位置距离准确度校准结果不确定度评定示例	•••• (47)
	Ι

附录 D	振动加速度校准结果	果不确定度评定示例		(53)
附录 E	校准原始记录模板	••••	••••••	(57)
附录 F	校准证书内页格式	•••••••		(68)

引 言

JJF 1001—2011《通用计量术语及定义》、JJF 1071—2010《国家计量校准规范编写规则》和JJF 1059.1—2012《测量不确定度评定与表示》共同构成制定本校准规范的基础性系列规范。

本规范参照 GB/T 12642—2013《工业机器人 性能规范及其试验方法》、 GB/T 11349.3—2006《振动与冲击 机械导纳的试验确定 第3部分:冲击激励法》 和 GB/T 20868—2007《工业机器人 性能试验实施规范》制定。

本规范为首次发布。

Contraction of the second

工业机器人校准规范

1 范围

本规范适用于具有三个或以上运动轴,并可重复编程、自动控制的工业机器人的 校准。

2 引用文件

本规范引用了下列文件:

JJF 1156 振动 冲击 转速计量术语及定义

JJF 1242 激光跟踪三维坐标测量系统校准规范

GB/T 2298 机械振动、冲击与状态监测 词汇

GB/T 11349.1—2018 机械振动与冲击 机械导纳的试验确定 第1部分:基本 术语与定义、传感器特性

GB/T 11349.3—2006 振动与冲击 机械导纳的试验确定 第3部分:冲击激励法

GB/T 12642-2013 工业机器人 性能规范及其试验方法

GB/T 12643 机器人与机器人装备 词汇

GB/T 12644—2001 工业机器人 特性表示

GB/T 16977—2019 机器人与机器人装备 坐标系和运动命名原则

GB/T 20868—2007 工业机器人 性能试验实施规范

GB/T 39266-2020 工业机器人机械环境可靠性要求和测试方法

凡是注日期的引用文件, 仅<u>注</u>日期的版本适用于本规范; 凡是不注日期的引用文件, 其最新版本(包括所有的修改单)适用于本规范。

3 术语和符号说明

- 3.1 术语
- 3.1.1 集群 cluster

用于计算准确度和重复性特性的一组测量点。

3.1.2 重心 barycentre

对于由坐标 (x_j, y_j, z_j) 确定的 *n* 个点的集群,由 *n* 个点各轴向坐标的算术平 均值得到的坐标为 (x, y, z) 的点。

3.1.3 位姿 pose

空间位置和姿态的总称。

3.1.4 指令位姿 command pose

机器人运动编程时由指令确定的机器人位姿。

3.1.5 实到位姿 attained pose

机器人响应指令位姿时实际达到的位姿。

注:实到位姿由校准设备测量所得,即实际测量值。

3.1.6 门限带 limit band

机器人实到位姿的控制上、下限。

- 3.2 符号说明
- 3.2.1 缩略语
 - A 准确度 (Accuracy)
 - d 漂移 (Drift)
 - F 波动 (Fluctuation)
 - J 抖动 (Jitter)
 - P 位姿 (Pose)
 - R 重复性 (Repeatability)
 - T 路径 (Path)
 - V 速度 (Velocity)
 - v 变动 (Variation)
- 3.2.2 量的符号
 - AD 距离准确度 (distance accuracy)
 - AP 位姿准确度 (pose accuracy)
 - AT 路径准确度 (path accuracy)
 - AV 路径速度准确度(path velocity accuracy)
 - *a*, *b*, *c* 对 *X*、*Y*、*Z* 轴的姿态(角分量)
 - CO 拐角超调 (cornering overshoot)
 - CR 拐角误差 (cornering round-off error)
 - D 两点之间的距离 (distance)
 - dAP 位姿准确度漂移 (drift of pose accuracy)
 - dRP 位姿重复性漂移 (drift of pose repeatability)
 - FV 路径速度波动 (path velocity fluctuation)
 - l 实到位姿和各个实到位姿集群重心间的距离
 - *m* 沿路径测量点数
 - n 测量循环次数
 - OV 位置超调量 (position overshoot)
 - RD 距离重复性 (distance repeatability)
 - RP 位姿重复性 (pose repeatability)
 - RT 路径重复性 (path repeatability)
 - RV 路径速度重复性 (path velocity repeatability)
 - S 标准偏差 (standard deviation)
 - SC 静态柔顺性 (static compliance)
 - t 位置稳定时间 (position stabilization time)

- vAP 多方向位姿准确度变动(multi-directional pose accuracy variation) x, y, z 沿 X, Y, Z 轴的直线坐标 3.2.3 下标 a, b, c 表示对 X, Y, Z 轴的姿态特性 *c* 指令 e 拐角点 (边界) g 机器人性能进入规定的路径特性内的点 h 表示 h 次方向 *i* 表示第*i* 点 *j* 表示第*j*次循环 k 表示第 k 次方向 *▶* 位置 x, y, z 表示沿 X, Y, Z 轴的定位特性 1, 2, … 表示位姿编号 1, 2, … 3.2.4 其他符号 C1~C8 试验立方体的顶点 E₁~E₈ 用于测量路径特性的矩形平面顶点 G 各实到位姿集群的重心
 - O。 测量系统坐标原点

4 概述

工业机器人广泛应用于汽车制造、工程机械、机车车辆、电子电器、生物制药等工 业自动化领域,常用于搬运、焊接、刷漆、激光加工、装配、码垛、产品检测和测 试等。

工业机器人的工作原理是给控制系统发出动作指令,控制驱动系统动作,驱动系统 带动执行机构运动,使执行机构的末端操作器到达空间某一位置和实现某一姿态,实施 一定的作业任务。末端操作器在空间的实时位姿由传感系统反馈给控制系统,控制系统 把实时位姿与目标位姿做比较,发出下一个动作指令,如此循环,直到完成作业任务 为止。

典型的工业机器人工作原理框图如图1所示。

图 1 典型的工业机器人工作原理框图

工业机器人主要由执行机构、驱动系统、控制系统和传感系统四部分组成。执行机构也叫操作机,是由一些相互铰接或相对滑动的构件组成的多自由度运动机构。典型的执行机构——六轴工业机器人操作机如图2所示。驱动系统主要指驱动执行机构的传动装置,根据动力源的不同,可分为液压驱动方式、气压驱动方式、电气驱动方式和新型驱动方式等。控制系统是机器人的重要组成部分,用于控制执行机构按照所需的顺序,沿规定的位置和路径运动。传感系统将执行机构的速度、位置等信息传递给控制系统,产生控制信号。

图 2 典型的执行机构 — 六轴工业机器人操作机 $O_0 - X_0 - Y_0 - Z_0$ — 绝对坐标系; $O_1 - X_1 - Y_1 - Z_1$ — 机座坐标系; $O_m - X_m - Y_m - Z_m$ — 机械接口坐标系; $1 \sim 6$ — 机器人机械关节(轴)

5 计量特性

5.1 位姿准确度和位姿重复性

5.1.1 位姿准确度

位姿准确度(AP)表示任一指令位姿和从相同方向多次接近该指令位姿时的实到 位姿平均值之间的偏差。位姿准确度分为:

a) 位置准确度:指令位姿的位置与实到位置集群重心之差。位置集群重心是通过 球拟合获得,拟合球心即为重心(见图 5)。

b) 姿态准确度:指令位姿的姿态与实到姿态平均值之差(见图 6)。

5.1.2 位姿重复性

位姿重复性(*RP*)表示对同一指令位姿从同一方向重复响应 *n* 次后实到位姿的一 致程度。对某一位姿,重复性表示为:

a) 位置重复性: 实到位置集群重心为球心的球半径 RP1 之值(见图 5)。

b) 姿态重复性: 围绕平均值a, b, c 的角度散布± $3S_a, \pm 3S_b, \pm 3S_c$, 其中 S_a, S_b, S_c 为标准偏差。姿态重复性使用 3 倍标准偏差表示(见图 6)。

5.2 多方向位姿准确度变动

多方向位姿准确度变动(vAP)表示从三个相互垂直的方向对相同指令位姿响应

n 次时,各实到位姿间的偏差(见图7)。多方向位姿准确度变动分为:

a) 多方向位置准确度变动 (vAP_p): 不同路径终点得到的实到位置集群重心间的 最大距离;

b) 多方向姿态准确度变动 (vAP_a, vAP_b, vAP_c) : 不同路径终点得到的实到姿态平均值间的最大偏差。

5.3 距离准确度和距离重复性

5.3.1 距离准确度

距离准确度(AD)表示任一指令距离和多次实到距离平均值之间偏差(见图 10)。 距离准确度包括位置距离准确度和姿态距离准确度。

5.3.2 距离重复性

距离重复性(*RD*)表示同一方向对相同指令距离重复运动 *n* 次后实到距离的一致 程度。距离重复性包括位置距离重复性和姿态距离重复性。

5.4 位置稳定时间

位置稳定时间是从机器人第一次进入门限带的瞬间到不再超出门限带的瞬间所经历的时间(见图 12),门限带可定义为位姿重复性或由制造商制定。

5.5 位置超调量

位置超调量是机器人第一次进入门限带再超出门限带后瞬时位置与实到位置的最大距离(见图 12)。

5.6 位姿特性漂移

a) 位姿准确度漂移 (*dAP*): 从冷态 (打开主电源) 开始,到热机状态下持续数 小时的位姿准确度的最大变化量;

b) 位姿重复性漂移 (*dRP*): 从冷态 (打开主电源) 开始, 到热机状态下持续数 小时的位姿重复性的最大变化量。

注: 冷态指关闭机器人电源 8 h 之后的状态,热机指机器人所有关节以最大可能的速度在其全程 70%的范围内运动。

5.7 路径准确度和路径重复性

5.7.1 路径准确度

路径准确度(AT)表示在位置和姿态上沿所得路径的最大路径偏差,包括位置路径准确度(AT_p)和姿态路径准确度(AT_a 、 AT_b 、 AT_c)。

5.7.2 路径重复性

路径重复性(RT)表示机器人对同一指令路径重复n次时实到路径的一致程度, 包括位置路径重复性(RT_p)和姿态路径重复性(RT_a 、 RT_b 、 RT_c)。

5.8 重复定向路径准确度

重复定向路径准确度是在一条直线路径上沿三个方向交替变换姿态时,各实到路径 位置集群的中心线与指令路径的位置之间的最大偏差。

5.9 拐角偏差

a) 拐角误差 (CR): 拐角点与实到路径间的最小距离。

b) 拐角超调 (CO): 机器人不减速地以设定恒定路径速度进入第二条路径后偏离

指令路径的最大值。

5.10 路径速度特性

机器人路径速度的性能特性可分为以下三项指标:

a)路径速度准确度(AV):指令速度与沿路径进行 n 次重复测量所获得的实到速 度平均值之差。

b)路径速度重复性(*RV*):对同一指令速度所得实到速度的一致程度。用相对实 到速度平均值的百分比表示。

c)路径速度波动 (FV):再现指令速度的过程中实到速度的最大变化量。

5.11 最小定位时间

定位时间指机器人在点位控制方式下从静态开始移动一预定距离和/或摆动一预定 角度到达稳定状态所经历的时间。5.4 中所定义的位置稳定时间包含于定位时间内。

注:若要得到最小定位时间,校准所用的速度为100%额定速度,且校准应在循环每一部分的最 佳速度下进行;并且选用较短的距离,在沿A.5.4 中定义的立方体对角线上,由程序或示 教设定一系列位姿(见图19),相邻位姿间的距离分量 D_x = D_y = D_z 之值符合表 11 中所示 的数列。

5.12 静态柔顺性

静态柔顺性是指单位负载作用下最大的位移。应在机械接口处加载并测量位移。在 机座坐标系下以 mm/N 为单位来表示。

5.13 振动加速度

工业机器人从静态开始执行指定路径时,机器人末端达到的最大加速度,取加速度的最大绝对值表示。

5.14 末端抖动

工业机器人从静态开始执行指定路径到停止在目标位姿时,机器人末端抖动的最大 位移,取峰值表示。

5.15 固有频率

工业机器人整机系统的固有频率,记录前4阶(如有)固有频率值。

5.16 动刚度

动刚度是指工业机器人受到动载荷作用时,抵抗动载荷下的变形能力,用力与位移 的复数比曲线表示。

6 校准条件

6.1 环境条件

6.1.1 环境温度:校准的环境温度(θ)应为 20 ℃。采用其他的环境温度应在校准报告中说明并加以解释。校准时温度应保持在θ±2 ℃范围内。

6.1.2 相对湿度:不大于 90%。

6.1.3 周围无强电磁场、无腐蚀性液体,无强振源。

6.1.4 其他:校准设备不应放在靠近热源、空调出风口、窗口、门口、地板接缝处及 阳光能够直射到的地方。工作地周围不应有大型机械及车辆工作,不应有明显振动。 6.2 校准用设备

校准用设备见表1。

序号	校准项目	校准用设备
1	位姿准确度和位姿重复性	
2	多方向位姿准确度变动	
3	距离准确度和距离重复性	
4	位置稳定时间	
5	位置超调量	激光跟踪仪
6	位姿特性漂移	(或光学相机或直线位移
7	路径准确度和路径重复性	法测量系统)
8	重复定向路径准确度	
9	拐角偏差	
10	路径速度特性	
11	最小定位时间	<u></u>
12	静态柔顺性	激光跟踪仪(或光学相机或 直线位移法测量系统) 力加载装置
13	振动加速度	动态信号分析仪
14	末端抖动	加速度计
15	固有频率	动态信号分析仪
16	动刚度	加速度计 力锤
注: 1 本 2 本 3 直	规范针对单一机器人设备,不包含 GB/T 1264 规范面向常规应用的机器人设备,不包含 GB/ 线位移法测量系统对测量性能有一些局限性,	12 中互换性的校准。 'T 12642 中摆动偏差的校准。 不适用姿态相关项目。

表1 校准项目和校准用设备

6.2.1 激光跟踪仪

其校准参数、校准范围应能满足被校工业机器人校准的要求,校准结果的扩展不确 定度应不大于被校工业机器人特性数值的最大允许误差绝对值的1/4。

6.2.2 光学相机

其校准参数、校准范围应能满足被校工业机器人校准的要求,校准结果的扩展不确 定度应不大于被校工业机器人特性数值的最大允许误差绝对值的1/4。

6.2.3 直线位移法测量系统

其校准参数、校准范围应能满足被校工业机器人校准的要求、校准结果的扩展不确

定度应不大于被校工业机器人特性数值的最大允许误差绝对值的1/4。

6.2.4 力加载装置

力值范围:被校工业机器人额定负载的10%~100%内可调,力值误差不超过±1%。 力施加方向:可分别加在平行于机座坐标轴的三个方向上,既有正也有负。

6.2.5 动态信号分析仪

A级,频率范围为DC~5kHz。

6.2.6 加速度计

频率范围为(0.5~200) Hz,加速度灵敏度测量不确定度 $U_{rel}=2\%$ (k=2)。

6.2.7 力锤

力值范围(10~1000)N,幅值测量不确定度U_{rel}=3%(k=2)。

7 校准项目和校准方法

7.1 校准项目

工业机器人的校准项目见表1。

7.2 校准方法

参照附录 A 进行机器人校准前的准备工作,完成后开始校准。

7.2.1 位姿准确度和位姿重复性

被校机器人与校准设备按图 3 位置摆放,被校机器人和校准设备之间应没有障碍物。在机器人末端朝向校准设备方向的工作空间中选择一个测试立方体。参照附录 A.5 选择立方体内的一个测试平面,并确定位姿校准点 P₁~P₅。被校机器人按表 2 的试验条件进行校准。

对被校机器人按如下所述进行编程:

1) 机器人从位姿点 P₁ 点开始,依次将机械接口以额定速度(或其 50%、10%) 移至 P₅、P₄、P₃、P₂、P₁,再回到 P₁,为一个运动循环。运动时采用点到点控制或连 续路径控制均可。可采用如图 4 所示的循环之一,以单一方向接近每个位姿。试验时所 用的接近方向与编程时的接近方向类同。

图 3 被校机器人与校准设备安装位置示意图

2)在每一个位姿点应停顿一段时间,停顿时间应大于测出的位姿稳定时间。如有运动同步功能,将选定的用于校准设备同步的开关量输出信号置1,使校准设备采集数据。将开关量输出信号置0,移动机械接口至下一位姿点。

3) 每次到达位姿稳定后, 校准设备对实到位姿进行测量。

4) 可无限制进行循环,待校准设备采集完 30 次循环的数据后,停止机器人的运动。

5) 按公式(1) ~公式(13) 计算每个位姿的位置准确度和姿态准确度。

6) 按公式(14) ~公式(20) 计算每个位姿的位置重复性和姿态重复性。

负载	速度	位姿	循环次数
100%额定负载	100%额定速度 50%额定速度 10%额定速度		20
额定负载降至10% (选用)	100%额定速度 50%额定速度 10%额定速度		30
第0次循环		P, 在第0次循环的P ₁ 处	不用测量
第1次循环	$P_5 \longrightarrow P_4 \longrightarrow P_3 \longrightarrow 1$	$P_2 \rightarrow P_1$	
第2次循环	$P_5 \longrightarrow P_4 \longrightarrow P_3 \longrightarrow 1$	P₂ → P₁	
Ĩ			
第30次循环 或	$P_5 \longrightarrow P_4 \longrightarrow P_3 \longrightarrow P_3$	⁴ 2 ─ ► P ₁	
第1次循环 P ₁ —	P_5 $P_5 \rightarrow P_4$ $P_4 \rightarrow P_4$	$\rightarrow P_3 \left \begin{array}{c} P_3 \rightarrow P_2 \\ \end{array} \right P_3 \rightarrow P_2 \left \begin{array}{c} P_3 \end{array} \right P_3 \rightarrow P_2 \left \begin{array}{c} P_3 \rightarrow P_2 \\ \end{array} \right P_3 \left \begin{array}{c} P_3 \rightarrow P_2 \end{array} \right P_3 \left \begin{array}{c} P_3 \rightarrow P_3 \left \begin{array}{c} P_3 \rightarrow P_3 \end{array} \right P_3 \left \begin{array}{c} P_3 \rightarrow P_3 \left \begin{array}{c} P_3 \rightarrow P_3 \end{array} \right P_3 \left \begin{array}{c} P_3 \rightarrow P_3 \left \begin{array}{c} P_3 \rightarrow P_3 \left \begin{array}{c} P_3 \rightarrow P_3 \right P_3 \left \begin{array}{c} P_3 \rightarrow P_3 \left P_3 \right P_3 \left \begin{array}{c} P_3 \rightarrow P_3 \right P_3 \left \begin{array}{c} P_3 \rightarrow P_3 \left P_3 \rightarrow P_3 \left P_3 \right P_3 \left \begin{array}{c} P_3 \left P_3 \right P_3 \right P_3 \left $	$r \rightarrow P_t$
第2次循环 P ₁ -	$\begin{array}{c c} + P_5 \\ \hline \\ $	$P_3 \xrightarrow{P_3} P_2 \xrightarrow{P_2} P_3$	2 → P ₁ / 仅在到达位 姿时测量
第30次循环 P1-	+ $P_5 \mid P_5 \rightarrow P_4 \mid P_4 -$	\rightarrow P ₃ P ₃ \rightarrow P ₂ P ₃	2

表 2 位姿准确度和重复性试验条件

图 4 位姿准确度和重复性循环图示

位置准确度和重复性定义如图 5 所示。 例:某一实到位置 4P_ G点位置: x、y、 Ξ 指令位姿P。所给定的O。 O_c 10 Rp X 图 5 位置准确度和重复性 姿态准确度和重复性定义如图 6 所示。 实到姿态角平均值 35 A ī 指令姿态 坐标系

图 6 姿态准确度和重复性

注: a 和 b 可用同一图。

7.2.1.1 位姿准确度 (AP)

位置准确度 (AP_p) 计算如下:

$$AP_{p} = \sqrt{AP_{x}^{2} + AP_{y}^{2} + AP_{z}^{2}}$$
(1)

$$AP_x = x_c - \overline{x} \tag{2}$$

$$AP_{y} = y_{c} - \overline{y} \tag{3}$$

$$AP_z = z_c - \overline{z} \tag{4}$$

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{n} x_j \tag{5}$$

$$\overline{y} = \frac{1}{n} \sum_{j=1}^{n} y_j \tag{6}$$

$$\overline{z} = \frac{1}{n} \sum_{j=1}^{n} z_j \tag{7}$$

式中:

x, y, z——对同一位姿重复响应 *n* 次后所得各点集群重心的坐标;

 x_c , y_c , z_c —指令位姿坐标;

 x_j , y_j , z_j ——第 j 次实到位姿的坐标。

姿态准确度 (AP_a, AP_b, AP_c) 计算如下:

$$AP_a = a_c - a \tag{8}$$

$$AP_{b} = b_{c} - b \tag{9}$$

$$AP_{c} = c_{c} - c \tag{10}$$

$$\overline{a} = \frac{1}{n} \sum_{j=1}^{n} a_j \tag{11}$$

$$\overline{b} = \frac{1}{n} \sum_{j=1}^{n} b_j \tag{12}$$

$$\overline{c} = \frac{1}{n} \sum_{j=1}^{n} c_j \tag{13}$$

式中:

a, *b*, *c* ——对同一位姿重复响应 *n* 次后所得的姿态角的平均值;

- a_c, b_c, c_c ——指令位姿的姿态角; a_j, b_j, c_j ——第 j 次实到位姿的姿态角。
- 7.2.1.2 位姿重复性 (RP)

位置重复性(RP₁)计算如下:

$$RP_l = l + 3S_l \tag{14}$$

$$\bar{l} = \frac{1}{n} \sum_{j=1}^{n} l_j \tag{15}$$

$$l_{j} = \sqrt{(x_{j} - \overline{x})^{2} + (y_{j} - \overline{y})^{2} + (z_{j} - \overline{z})^{2}}$$
(16)

$$S_{l} = \sqrt{\frac{\sum_{j=1}^{n} (l_{j} - \bar{l})^{2}}{n - 1}}$$
(17)

式中:

x, y, z — 对同一位姿重复响应 n 次后所得各点集群重心的坐标;

 x_j, y_j, z_j ——第 j 次实到位姿的坐标。

姿态重复性 (RP_a, RP_b, RP_c) 计算如下:

$$RP_{a} = \pm 3S_{a} = \pm 3\sqrt{\frac{\sum_{j=1}^{n} (a_{j} - \overline{a})^{2}}{n-1}}$$
(18)

$$RP_{b} = \pm 3S_{b} = \pm 3\sqrt{\frac{\sum_{j=1}^{n} (b_{j} - \overline{b})^{2}}{n-1}}$$
(19)

$$RP_{c} = \pm 3S_{c} = \pm 3\sqrt{\frac{\sum_{j=1}^{n} (c_{j} - \overline{c})^{2}}{n-1}}$$
(20)

式中:

a, b, c——对同一位姿重复响应 *n* 次后所得的姿态角的平均值;

 a_j, b_j, c_j ——第 j 次实到位姿的姿态角。

7.2.2 多方向位姿准确度变动

按 7.2.1 方法摆放被校机器人和校准设备、选择测试立方体和测试平面,并选择 P₁、P₂、P₄为多方向位姿准确度变动的校准点。被校机器人按表 3 的试验条件进行 校准。

对被校机器人按如下所述进行编程:

1)在机座坐标系-X、-Y、-Z方向上分别选定与 P_1 点距离不小于 200 mm 的 三点 a、b、c。运动范围较小的机器人,无法运动 200 mm 时,根据机器人实际情况酌 情减小距离。

2) 从 a 点开始,将机械接口以额定速度(或其 50%、10%)移至 P₁,然后移至 b,再移至 P₁,移至 c 点,再移至 P₁,最后回到 a 点为一个循环。

3)每次到达 P₁后,应停顿一段时间,停顿时间应大于测出的位姿稳定时间。如有运动同步功能,将选定的用于校准设备同步的开关量输出信号置 1,使校准设备采集数据,然后将开关量输出信号置 0,移动机械接口至下一位姿点。

4) 每次到达位姿稳定后,校准设备对实到位姿进行测量。

5)采用如图 8 所示的循环,可无限制进行循环,待校准设备采集完 30 次循环的数据后,停止机器人的运动。

6) 对于位姿点 P_1 ,以坐标的负方向接近;对于位姿点 P_2 和 P_4 ,则从立方体内部 接近(见图 7)。位姿点 P_2 和 P_4 的试验程序与上述类似,但 P_2 的 a、b、c 点应分别在 -X、-Y、-Z方向上, P_4 的 a、b、c 点应分别在 X、Y、Z方向上。

7) 按公式(21) ~公式(24) 计算每个位姿的多方向位姿准确度变动。

如果不可能,应使用制造商指定的接近方向并在证书中说明。

负载	速度	位姿	循环次数
100%额定负载	100%额定速度 50%额定速度 10%额定速度	D _ D _ D	20
额定负载降至10% (选用)	100%额定速度 50%额定速度 10%额定速度		50

表 3 多方向位姿准确度变动试验条件

多方向位置准确度变动(vAP。) 计算如下:

 $vAP_{p} = \max \sqrt{(x_{h} - x_{k})^{2} + (y_{h} - y_{k})^{2} + (z_{h} - z_{k})^{2}}$ h, k = 1, 2, 3 (21) 多方向姿态准确度变动 (vAP_{a} , vAP_{b} , vAP_{c}) 计算如下:

$$vAP_{a} = \max |(a_{h} - a_{k})|$$
 $h, k=1, 2, 3$ (22)

$$vAP_{b} = \max \mid (\overline{b}_{h} - \overline{b}_{k}) \mid \qquad h, \ k = 1, \ 2, \ 3$$

$$(23)$$

$$vAP_{c} = \max | (\bar{c}_{h} - \bar{c}_{k}) |$$
 $h, k=1, 2, 3$ (24)

式中:

1,2,3——接近路径的编号;

x_h, y_h, z_h — 按路径 h 接近同一位姿重复响应 n 次后所得各点集群重心的坐标;

 \overline{x}_k , \overline{y}_k , \overline{z}_k — 按路径 k 接近同一位姿重复响应 n 次后所得各点集群重心的坐标;

 a_h , b_h , c_h —— 按路径 h 接近同一位姿重复响应 n 次后所得的姿态角的平均值;

 a_k , b_k , c_k — 按路径 k 接近同一位姿重复响应 n 次后所得的姿态角的平均值。

7.2.3 距离准确度和距离重复性

本项目仅用于离线编程和人工数据输入的机器人。

按 7.2.1 方法摆放被校机器人和校准设备、选择测试立方体和测试平面,并选取指 令位姿 P₂ 和 P₄ 进行距离准确度校准。被校机器人按表 4 的试验条件进行校准。

对被校机器人按如下所述进行编程:

1) 从位姿点 P₄ 开始,将机械接口以额定速度(或其 50%、10%)移至 P₂,再回 到 P₄,为一个运动循环(见图 9)。运动时采用点到点控制或连续路径控制均可。

2)到达 P₂和 P₄时,应停顿一段时间,停顿时间应大于测出的位姿稳定时间。如 有运动同步功能,将选定的用于校准设备同步的开关量输出信号置1,使校准设备采集 数据。将开关量输出信号置0,移动机械接口至下一位姿点。

3) 每次到达位姿稳定后, 校准设备对实到位姿进行测量。

4)可无限制进行循环,待校准设备采集完 30 次循环的数据后,停止机器人的运动。

5)按公式(25) ~公式(46)计算距离准确度。在报告中至少要有 AD,的值。按 公式(47) ~公式(53)计算距离重复性。在报告中至少要有 RD 的值。

负载	速度	位姿	循环次数
100%额定负载	100%额定负载 50%额定负载 10%额定负载	$P_2 - P_4$	30
第()次循环 次循环 P2	P4 P4 P4 在第0次循环的 处不进行测量	5P4
第2	2次循环 P ₂	/ P4	
第3	0次循环 P2	- P ₁	
	图 9 距离准确度	和重复性循环图示	

表 4 距离准确度和重复性试验条件

图 10 距离准确度

7.2.3.1 距离准确度

位置距离准确度(AD_p)计算如下:

$$AD_{p} = D_{c} - \overline{D} \tag{25}$$

$$\overline{D} = \frac{1}{n} \sum_{j=1}^{n} D_j \tag{26}$$

$$D_{j} = |\mathbf{P}_{4j} - \mathbf{P}_{2j}| = \sqrt{(x_{4j} - x_{2j})^{2} + (y_{4j} - y_{2j})^{2} + (z_{4j} - z_{2j})^{2}}$$
(27)

$$D_{c} = |\mathbf{P}_{4} - \mathbf{P}_{2}| = \sqrt{(x_{c4} - x_{c2})^{2} + (y_{c4} - y_{c2})^{2} + (z_{c4} - z_{c2})^{2}}$$
(28)

式中:

- x_{c2} 、 y_{c2} 、 z_{c2} —— P_2 的指令位姿坐标; x_{4j} 、 y_{4j} 、 z_{4j} —— P_4 第 j 次实到位姿的坐标;
- x_{2j} 、 y_{2j} 、 z_{2j} —— P_2 第 j 次实到位姿的坐标;

n——重复次数。

位置距离准确度也可用机座坐标系各轴分量来表示,计算如下:

$$AD_x = D_{cx} - \overline{D}_x \tag{29}$$

$$AD_{y} = D_{cy} - \overline{D}_{y} \tag{30}$$

$$AD_z = D_{cz} - \overline{D}_z \tag{31}$$

$$\overline{D}_{x} = \frac{1}{n} \sum_{j=1}^{n} D_{xj} = \frac{1}{n} \sum_{j=1}^{n} |x_{4j} - x_{2j}|$$
(32)

$$\overline{D}_{y} = \frac{1}{n} \sum_{j=1}^{n} D_{yj} = \frac{1}{n} \sum_{j=1}^{n} |y_{4j} - y_{2j}|$$
(33)

$$\overline{D}_{z} = \frac{1}{n} \sum_{j=1}^{n} D_{zj} = \frac{1}{n} \sum_{j=1}^{n} |z_{4j} - z_{2j}|$$
(34)

$$D_{cx} = |x_{c4} - x_{c2}| \tag{35}$$

$$D_{cy} = |y_{c4} - y_{c2}|$$
(36)

$$D_{cz} = |z_{c4} - z_{c2}| \tag{37}$$

姿态距离准确度(AD_a, AD_b, AD_c)计算方法相当于单轴距离准确度,计算 如下:

$$AD_a = D_{ca} - \overline{D}_a \tag{38}$$

$$AD_b = D_{cb} - \overline{D}_b \tag{39}$$

$$AD_{c} = D_{cc} - \overline{D}_{c} \tag{40}$$

$$\overline{D}_{a} = \frac{1}{n} \sum_{j=1}^{n} D_{aj} = \frac{1}{n} \sum_{j=1}^{n} |a_{4j} - a_{2j}|$$
(41)

$$\overline{D}_{b} = \frac{1}{n} \sum_{j=1}^{n} D_{bj} = \frac{1}{n} \sum_{j=1}^{n} |b_{4j} - b_{2j}|$$
(42)

$$\overline{D}_{c} = \frac{1}{n} \sum_{j=1}^{n} D_{cj} = \frac{1}{n} \sum_{j=1}^{n} |c_{4j} - c_{2j}|$$
(43)

$$D_{ca} = |a_{c4} - a_{c2}|$$
 (44)

$$D_{cb} = |b_{c4} - b_{c2}|$$
 (45)

$$D_{cc} = |c_{c4} - c_{c2}| \tag{46}$$

式中:

$$a_{c2}$$
、 b_{c2} 、 c_{c2} ——P₂的指令位姿姿态

 a_{4j} 、 b_{4j} 、 c_{4j} —— P_4 第 j 次实到位姿的姿态; a_{2j} 、 b_{2j} 、 c_{2j} —— P_2 第 j 次实到位姿的姿态;

n——重复次数。

7.2.3.2 距离重复性

对于给定的指令距离,位置距离重复性计算如下:

$$RD = \pm 3 \sqrt{\frac{\sum_{j=1}^{n} (D_j - \overline{D})^2}{n-1}}$$
(47)

$$RD_{x} = \pm 3 \sqrt{\frac{\sum_{j=1}^{n} (D_{xj} - \overline{D}_{x})^{2}}{n-1}}$$
(48)

$$RD_{y} = \pm 3 \sqrt{\frac{\sum_{j=1}^{n} (D_{yj} - \overline{D}_{y})^{2}}{n-1}}$$
(49)

$$RD_{z} = \pm 3 \sqrt{\frac{\sum_{j=1}^{n} (D_{zj} - \overline{D}_{z})^{2}}{n-1}}$$
(50)

姿态距离重复性 (RD_a , RD_b , RD_c) 计算如下:

$$RD_{a} = \pm 3 \sqrt{\frac{\sum_{j=1}^{n} (D_{aj} - \overline{D}_{a})^{2}}{n-1}}$$
(51)

$$RD_{b} = \pm 3\sqrt{\frac{\sum_{j=1}^{n} (D_{bj} - \overline{D}_{b})^{2}}{n-1}}$$
(52)

$$RD_{c} = \pm 3 \sqrt{\frac{\sum_{j=1}^{n} (D_{cj} - \overline{D}_{c})^{2}}{n-1}}$$
(53)

7.2.4 位置稳定时间

按 7.2.1 方法摆放被校机器人和校准设备、选择测试立方体和测试平面,并选择 P₁ 点进行位置稳定时间的校准,位置稳定时间的三维图示见图 11。被校机器人按表 5 的试验条件进行校准。

负 载	速 度	位姿	循环次数
	100%额定速度		
100%额定负载	50%额定速度		
	10%额定速度	D	2
· · · · · · · · · · · · · · · · · · ·	100%额定速度		0
	50%额定速度		
(匹用)	10%额定速度	Q.	

表 5 位置稳定时间试验条件

对被校机器人按如下所述进行编程: ----

1) 从位姿点 P₂ 开始,将机械接口以额定速度(或其 50%、10%)移至 P₁,再回 到 P₂,为一个运动循环。运动时采用点到点控制或连续路径控制均可。

2)到达 P₁时,如有运动同步功能,将选定的用于校准设备同步的开关量输出信号置1,使校准设备采集数据,0.1 s 后,再将该输出信号置0。校准设备数据采集的停止必须采用定时方式。需要预计估计位置稳定时间,在校准设备上设置略大的采集终止时间。如果预设的时间不能使校准设备采集到完整的稳定过程,需要加长设置的时间重新进行校准。校准设备应连续测量校准点的位置,直到稳定,并记录稳定时间。

3) 超过预先估计的位置稳定时间后,返回 P₂。

4) 可无限制进行循环,待校准设备采集完 3 次循环的数据后,停止机器人的运动。 计算 3 次测量的平均值(见图 12)。

门限带可定义为 7.2.1 中的重复性或由制造商制定。

(1) ——过阻尼接近示例曲线,超调量为0;

(2) ---振荡接近示例曲线, OV; 存在。

7.2.5 位置超调量

按7.2.4方法,位置稳定时间和位置超调量可同时进行校准。按公式(54)~ 公式(55)计算位置超调量,位置超调量的三维图示见图11。

位置超调量等于超出测量点 P₁的移动距离,超调量应测量 3 次,计算 3 次中的最 大值(见图12)。

$$OV = \max OV_j$$
 (54)

若 max $D_{ii} >$ 门限带, $OV_i = \max D_{ii}$

若 max $D_{ij} \leq$ 门限带, $OV_j = 0$

$$\max D_{ij} = \max \sqrt{(x_{ij} - x_j)^2 + (y_{ij} - y_j)^2 + (z_{ij} - z_j)^2} \quad i = 1, 2, \dots, m \quad (55)$$
式中:

-表示机器人进入门限带后测量的采样点号。 i^{-}

对于某些特殊应用,OV也可用其分量OV_x、OV_y、OV_z来表示。

7.2.6 位姿特性漂移

按 7.2.1 方法摆放被校机器人和校准设备、选择测试立方体和测试平面,并选择 P₁ 为位姿特性漂移的校准点。被校机器人按表 6 的试验条件进行校准。

表 6 位姿特性漂移试验条件

负 载	速度	位姿	循环次数	循环时间
100%额定负载	100%额定速度 50%额定速度 10%额定速度	P_1	10 次	最多 8 h; 若连续五次校准 漂移变化率小于 第 1 小时内的最 大漂移变化率的 10%,则可以提 前结束校准

位姿特性漂移校准应从冷态(打开主电源)开始,并在热机状态下持续数小时。遵循下述操作顺序:

1) 上电进行试验循环编程;指令位姿应在冷态下示教。

2) 关闭机器人电源不少于 8 h。

3) 重新启动机器人并开始程序的自动循环。

a) 校准循环:

i.被编程的机器人其机械接口从位姿点 P₂开始,使机械接口以额定速度(或 其 50%、10%)移至 P₁,再回到 P₂,为一个运动循环。运动时采用点到点控制或 连续路径控制均可。

ii. 在 P₁ 应停顿一段时间,停顿时间应大于测出的位姿稳定时间。如有运动同步功能,将选定的用于校准设备同步的开关量输出信号置 1。将开关量输出信号置 0,移动机械接口至 P₂。从 P₁ 返回到 P₂ 过程中设一中间位姿点,使机械接口的姿态有较大变化,以保证返回时所有关节均运动。

 ⅲ.每次到达 P₁ 位姿稳定后,校准设备对实到位姿进行测量。循环 10 次,按 公式(1) ~公式(13) 计算位置准确度和姿态准确度,按公式(14) ~公式(21) 计算位置重复性和姿态重复性。

iv. 可无限制进行循环,待漂移试验结束后,停止机器人的运动。

b) 热机循环: 当从 P₁ 返回 P₂(10 min) 时,所有关节应以最大可能的速度 在其全程 70%的范围内运动(见表 6),见图 13 的流程图。对于特殊的应用可选择 不同的值。

c) 校准中, 若连续五次校准漂移的变化率小于第1小时内的最大漂移变化 率的 10%,则可以提前结束校准,不用等到8h。用测量值计算位姿准确度和重复 性(见7.2.1),所得的结果作为时间的函数制作图表。两个测量循环之间的时间 应是 10 min(热机流程见图 13 和图 14)。按公式(56)~公式(63)计算位姿特 性漂移,并在报告中记录最大值。

图 13 漂移测量流程图

位姿准确度漂移和位姿重复性漂移的计算公式如下: 位置准确度漂移(dAP_p):

$$dAP_{p} = |AP_{t=1} - AP_{t=N}|$$

$$(56)$$

姿态准确度漂移 (dAP_a, dAP_b, dAP_c) :

$$dAP_{a} = |AP_{at=1} - AP_{at=N}|$$

$$(57)$$

$$dAP_{b} = |AP_{bt=1} - AP_{bt=N}|$$
(58)

$$dAP_{c} = |AP_{ct=1} - AP_{ct=N}|$$

$$(59)$$

位置重复性漂移 (dRP_p) :

$$dRP_{p} = |RP_{t=1} - RP_{t=N}|$$
(60)

姿态重复性漂移(dRPa,dRPb,dRPc):

$$dRP_{a} = |RP_{at=1} - RP_{at=N}|$$

$$(61)$$

$$dRP_{b} = |RP_{bt=1} - RP_{bt=N}|$$
(62)

$$dRP_{c} = |RP_{ct=1} - RP_{ct=N}|$$
(63)

7.2.7 路径准确度和路径重复性

按 7.2.1 方法摆放被校机器人和校准设备、选择测试立方体,参照 A.5.6 选择校准路径,路径准确度与路径重复性如图 15 所示。被校机器人按表 7 的试验条件进行校准。

表 7	路径准	确度和重复性试验条件

负载	速度	路径形状	循环次数
100%额定负载	100% <mark>额定速</mark> 度 50%额定速度 10%额定速度	直线路径: E ₁ -E ₂	10
额定负载降至10% (选用)	100%额定速度 50%额定速度 10%额定速度	圆形路径:大圆和小圆	10

图 15 对某一指令路径的路径准确度与路径重复性

对被校机器人按如下所述进行编程:

1)从试验路径起点开始,使机械接口以额定速度(或其 50%、10%)沿路径(直线、或大圆、或小圆)运行至路径终点,再回到起点,待被校机器人达到静止状态时,为一个测试循环。

2) 如有运动同步功能,开始运动前,将选定的用于校准设备同步的开关量输出信 号置1,停顿0.1 s 后置0。

3) 到达终点时,待被校机器人达到静止状态时,再向起点运动。

4)校准设备数据采集的停止可以有定时和同步两种方式。定时停止需要预先估计 全路径运动时间,在校准设备上设置略大的采集终止时间。同步停止需要在机器人控制 器上选定另一个开关量输出,到达路径终点后,停顿 0.1 s,使该信号置 1,0.1 s 后置 0,仪器收到信号后停止采集。这两种方式均可使校准设备采集到完整的路径数据。

5)可无限制进行循环,待校准设备采集完 10 次循环的数据后,停止机器人的运动。

6)按公式(64) ~公式(67)计算路径准确度,按公式(68) ~公式(71)计算路径重复性。

7.2.7.1 路径准确度 (AT)

位置路径准确度 (AT_p) 计算如下:

 $AT_{p} = \max \sqrt{(x_{ci} - \overline{x_{i}})^{2} + (y_{ci} - \overline{y_{i}})^{2} + (z_{ci} - \overline{z_{i}})^{2}} \quad i = 1, 2, \dots, m \quad (64)$ 其中:

$$\overline{x_i} = \frac{1}{n} \sum_{j=1}^n x_{ij}$$
, $\overline{y_i} = \frac{1}{n} \sum_{j=1}^n y_{ij}$, $\overline{z_i} = \frac{1}{n} \sum_{j=1}^n z_{ij}$

式中:

 x_{ci} 、 y_{ci} 、 z_{ci} ——指令路径上第*i*点的坐标; x_{ij} 、 y_{ij} 、 z_{ij} ——第*j*条实到路径与第*i*个正交平面交点的坐标。 姿态路径准确度(AT_a 、 AT_b 和 AT_c)计算如下:

$$AT_{a} = \max |a_{ci} - a_{i}| \quad i = 1, 2, \dots, m$$
(65)

$$AT_{b} = \max | b_{ci} - \overline{b}_{i} | \quad i = 1, 2, \dots, m$$
 (66)

$$AT_{c} = \max \mid c_{ci} - \overline{c_{i}} \mid \quad i = 1, 2, \dots, m$$

$$(67)$$

其中:

$$\overline{a}_{i} = \frac{1}{n} \sum_{j=1}^{n} a_{ij}, \ \overline{b}_{i} = \frac{1}{n} \sum_{j=1}^{n} b_{ij}, \ \overline{c}_{i} = \frac{1}{n} \sum_{j=1}^{n} c_{ij}$$

式中:

位置路径重复性 (RT_p) 和姿态路径重复性 (RT_a, RT_b, RT_c) 计算如下:

$$RT_{p} = \max RT_{pi} = \max |\bar{l}_{i} + 3S_{li}| \qquad i = 1, 2, \dots, m$$
(68)

其中:

$$L_{i} = \frac{1}{n} \sum_{j=1}^{n} L_{ij}$$

$$S_{li} = \sqrt{\frac{\sum_{j=1}^{n} (L_{ij} - \bar{L}_{i})^{2}}{n-1}}$$

$$L_{ij} = \sqrt{(x_{ij} - \bar{x}_{i})^{2} + (y_{ij} - \bar{y}_{i})^{2} + (z_{ij} - \bar{z}_{i})^{2}}$$

式中:

x_{ij}、y_{ij}、z_{ij} —— 第 j 条实到路径第 i 个正交平面交点的坐标。

$$RT_{a} = \max 3 \sqrt{\frac{\sum_{j=1}^{n} (a_{ij} - \overline{a_{i}})^{2}}{n-1}} \quad i = 1, 2, \dots, m$$
(69)

$$RT_{b} = \max 3 \sqrt{\frac{\sum_{j=1}^{n} (b_{ij} - \overline{b}_{i})^{2}}{n-1}} \quad i = 1, \ 2, \ \cdots, \ m$$
(70)

$$RT_{c} = \max 3 \sqrt{\frac{\sum_{j=1}^{n} (c_{ij} - \overline{c_{i}})^{2}}{n-1}} \quad i = 1, 2, \dots, m$$
(71)

其中:

$$\overline{a}_i = \frac{1}{n} \sum_{j=1}^n a_{ij}, \ \overline{b}_i = \frac{1}{n} \sum_{j=1}^n b_{ij}, \ \overline{c}_i = \frac{1}{n} \sum_{j=1}^n c_{ij}$$

式中:

a_{ij}、b_{ij}、c_{ij} ——点(x_{ij}、y_{ij}、z_{ij})处的指令姿态。

7.2.8 重复定向路径准确度

按 7.2.1 方法摆放被校机器人和校准设备、选择测试立方体,参照 A.5.6 选择校准路径。被校机器人按表 8 的试验条件进行校准。

负载	速度	路径形状	循环次数
100%额定负载	100%额定速度 50%额定速度 10%额定速度	直线路径	10
额定负载降至10% (选用)	100%额定速度 50%额定速度 10%额定速度	$P_{6} - P_{9}$	10

表 8 重复定向路径准确度试验条件

重复定向路径准确度仅测量位置路径准确度(AT_p),采用下述试验,如图 16 所示。

绕 Y_n 轴改变姿态的说明:

- P_6 (起点) 处, B_n 角+15°或+30°
- $P_6 \cong P_1$, B_n 角-15°或-30°
- $P_1 \cong P_9$, $B_n \oplus +15^{\circ} \oplus +30^{\circ}$

图 16 改变姿态的说明

注:姿态改变推荐值为15°或30°,根据实际(客户)情况调整。

对被校机器人按如下所述进行编程:

 1) 在试验平面 E₁, …, E₄ 内, 应像图 A.6 一样等距标记好另一些点 P₆, …, P₉。
 为了确定姿态, 应建立一个坐标系, 其 X_n、Y_n 面平行于所选择的 E₁, …, E₄ 平面, 直线路径 P₆, …, P₉ 平行于 Y_n 轴。

2)从位姿点 P₆开始,使机械接口以额定速度(或其 50%、10%)连续变姿态地
 24

绕 X_n 、 Z_n 轴改变姿态的说明: P_6 (起点) 处, A_n 角+15°或+30° P_6 至 P_7 , A_n 角 0° P_7 至 P_1 , C_n 角 -15°或-30° P_1 至 P_8 , C_n 角 0° P_8 至 P_9 , A_n 角-15°或-30°

经过 P₇、P₁、P₈ 到达 P₉,再回到起点,待被校机器人达到静止状态时,为一个校准循环。运动时采用连续路径控制。

3)如有运动同步功能,开始运动前,将选定的用于校准设备同步的开关量输出信号置1,停顿0.1 s 后置0。

4) 到达终点时,待被校机器人达到静止状态时,再向起点运动。

5) 校准设备数据采集的停止可以有定时和同步两种方式。定时停止需要预先估计 全路径运动时间,在校准设备上设置略大的采集终止时间。同步停止需要在机器人控制 器上选定另一个开关量输出,到达路径终点后,停顿 0.1 s,使该信号置 1,0.1 s 后置 0,仪器收到信号后停止采集。这两种方式均可使校准设备采集到完整的路径数据。

6)可无限制进行循环,待校准设备采集完 10 次循环的数据后,停止机器人的运动。

7)重复定向路径准确度的计算类似位置路径准确度的计算,按公式(68)计算。7.2.9 拐角偏差

按 7.2.1 方法摆放被校机器人和校准设备、选择测试立方体,参照 A.5.6 选择矩 形路径(拐角记为 E_1 、 E_2 、 E_3 、 E_4),拐角点如图 17 中的(x_e , y_e , z_e)。被校机器人 按表 9 的试验条件进行校准。

负 载	速度	拐角	循环次数
100%额定负载	100%额定速度 50%额定速度 10%额定速度	$E_1 - E_2 - E_3 - E_4$	3

表9 拐角偏差试验条件

对被校机器人按如下所述进行编程:

1) 通过连续路径编程,使机器人运行一条矩形指令路径,以 $E_1(P_2)$ 和 $E_4(P_5)$ 的中点作为起点,将机械接口以额定速度(或其 50%、10%)直线地移向 E_1 ,再移至 E_1 、 $E_2(P_3)$ 、 $E_4(P_5)$,然后回到 $E_1(P_2)$ 和 $E_4(P_5)$ 的中点,完成一个循环。若不另外说明,姿态是垂直于矩形路径平面的。

2)四个拐角 E₁、E₂、E₃、E₄ 是两段直线路径的交点,机器人在这里不停顿,但可按制造商规定的方式完成两条路径的平滑过渡,且在校准证书中说明。当实现路径时,任何自动的速度下降均应按照制造商的规定,且应在校准证书中说明。

3)如有运动同步功能,开始运动前,将选定的用于校准设备同步的开关量输出信号置1,停顿0.1s后置0。

4) 到达终点时,待被校机器人达到静止状态时,再向起点运动。

5) 校准设备数据采集的停止可以有定时和同步两种方式。定时停止需要预先估计 全路径运动时间,在校准设备上设置略大的采集终止时间。同步停止需要在机器人控制 器上选定另一个开关量输出,到达路径终点后,停顿 0.1 s,使该信号置 1,0.1 s 后置 0,仪器收到信号后停止采集。这两种方式均可使校准设备采集到完整的路径数据。

6) 可无限制进行循环, 待校准设备采集完 3 次循环的数据后, 停止机器人的运动。

7) 四个拐角均应测量,按公式(72) ~公式(75) 计算拐角偏差。

7.2.10 路径速度特性

路径速度特性应与路径准确度在相同的直线路径上进行校准,图 18 表示了路径速 度特性的理想化图形。采用 7.2.7 方法,按表 10 的试验条件进行校准,循环次数为 10 次。

图 18 路径速度特性 表 10 路径速度特性试验条件

负载	速度	路径形状	循环次数
100%额定负载	100%额定速度 50%额定速度 10%额定速度	古 <u></u> 建成 Γ − Γ	10
额定负载降至10% (选用)	100%额定速度 50%额定速度 10%额定速度		10

当路径有较大的速度波动出现时,作为时间函数进行的重复测量,应参照指令路径 上同一空间点来进行。

测量应在位于试验路径长度中部稳定速度段且在 50%长度上进行。 路径速度准确度(AV)计算如下:

$$AV = \frac{v_c - v}{\overline{v}} \times 100\%$$
(76)

其中:

$$\overline{v} = \frac{1}{n} \sum_{j=1}^{n} \overline{v}_{j}$$
$$\overline{v}_{j} = \frac{1}{m} \sum_{j=1}^{n} \overline{v}_{ij}$$

式中:

- *v_c* ──指令速度; *v_{ij}* ──第*j*次测量第*i*点的实到速度;

m——沿路径测量的次数。

路径速度重复性(RV)计算如下:

$$RV = \pm \left(\frac{3S_v}{v} \times 100\%\right) \tag{77}$$

其中:

$$S_v = \sqrt{\frac{\sum_{j=1}^n (\overline{v}_j - \overline{v})^2}{n-1}}$$

路径速度波动 (FV) 计算如下:

$$FV = \max\left[\max_{i=1}^{m} (v_{ij}) - \min_{i=1}^{m} (v_{ij})\right] \quad j = 1, \ \cdots, \ n$$
(78)

7.2.11 最小定位时间

额定负载降至10%

(选用)

按 7.2.1 方法摆放被校机器人和校准设备、选择测试立方体和测试平面, 按表 11 和表 12 给出的试验条件进行校准。

表 11 量	曼小定位时	间的试验	位姿和	距离
--------	--------------	------	-----	----

位姿	P_1	P ₁₊₁	P_{1+2}	P_{1+3}	P_{1+4}	P_{1+5}	P_{1+6}	P ₁₊₇
与前一位姿的距离比例/mm $(D_x = D_y = D_z)$	0	-10	+20	-50	+100	-200	+500	-1 000
路径形状	$\mathbf{P}_1 \rightarrow \mathbf{P}_{1+1} \rightarrow \mathbf{P}_{1+2} \rightarrow \mathbf{P}_{1+3} \rightarrow \mathbf{P}_{1+4} \rightarrow \mathbf{P}_{1+5} \rightarrow \mathbf{P}_{1+6} \rightarrow \mathbf{P}_{1+7}$							
表 12 最小定位时间试验条件								
负 载		速	度	1.7		循于	不次 数	
100%额定速度								
100%额定负载		最信	圭速度				3	
	(厂家说明	月书推荐	值)				

100%额定速度

最佳速度

3

(厂家说明书推荐值) 7 Pa(P1+6) P1+5 P1+5 P2(P1+7) P2(P1+7)

图 19 最小定位时间循环图示

对被校机器人按如下所述进行编程:

1)为了在定位时间测量中有较短的距离,在沿 A.5.4 中定义的立方体对角线上, 由程序或示教设定一系列位姿(见图 19),相邻位姿间的距离分量 *D_x* = *D_y* = *D_z* 之值 符合表 11 中所示的数列。

2) 从位姿点 P₁ 开始,使机械接口以额定速度直线移向 P₁₊₁,…,P₁₊₇一系列位姿 点(见表 11),最后回到 P₁,为一个运动循环。位姿的个数与距离取决于所选的立方体 28 大小。

3)如有运动同步功能,开始运动前,将选定的用于校准设备同步的开关量输出信 号置1,停顿0.1 s 后置0。

4) 到达终点时,待被校机器人达到静止状态时,再向起点运动。

5) 校准设备数据采集的停止可以有定时和同步两种方式。定时停止需要预先估计 从起点到终点的全程运动时间,在校准设备上设置略大的采集终止时间。同步停止需要 在机器人控制器上选定另一个开关量输出,到达终点后,停顿 0.1 s,使该信号置 1, 0.1 s 后置 0,仪器收到信号后停止采集。这两种方式均可使校准设备采集到全程的 数据。

6)可无限制进行循环,待校准设备采集完3次循环的数据后,停止机器人的运动。

7)校准设备跟踪被校机器人的运动,记录从起始位姿到到达位姿的总距离,以及从静止状态开始,运行预定距离,到达静止状态所经历的时间(包括稳定时间)。 对于每一个循环过程,计算3次循环的平均值,列表给出定位时间和位姿间的距离。

若想得到较短的定位时间,试验所用的速度为100%额定速度,且试验应在循环每一部分的最佳速度下进行。所用的速度应在校准证书中说明。

7.2.12 静态柔顺性

按 7.2.1 方法摆放被校机器人和校准设备、选择测试立方体和测试平面,由程序或 示教到 P₁,使校准在 A.5.4 中所定义的位于 P₁ 的机械接口的中心进行。按如下步骤 校准:

1) 机器人接电,由程序或示教 \mathbf{P}_1 。

2) 被校机器人的伺服系统通电、制动器脱开。

3) 试验中所用的力应加在机械接口处平行于机座坐标轴的三个方向上,既有正也 有负,以10%额定负载逐步增加到100%额定负载。对于每个力和方向,逐次测量相应 的位移。

4) 每个方向上重复三次校准,按公式(79) 计算柔顺性。

$$\overline{SC} = \frac{1}{n} \sum_{i=1}^{n} SC_i$$
(79)

其中:

$$SC_i = \frac{d_i}{F_i}$$

式中:

d_i ——一个方向上第 i 次力加载时对应的位移, mm;

F_i ——一个方向上第 i 次加载的力, N。

7.2.13 振动加速度

在机器人零位状态下,将加速度计刚性连接在机器人的末端中心(见图 20),使加速度计的 X、Y、Z 方向与机座坐标系重合,加速度计连接至动态信号分析仪。按表 13 的试验条件进行校准。

JJF 2138—2024

表 13 加速度试验条件

负载	速度	路径形状	循环次数	
100%额定负载	100%额定速度 50%额定速度 10%额定速度	直线路径: E ₁ -E ₂	2	
额定负载降至10% (选用)	100%额定速度 50%额定速度 10%额定速度	(保持姿态不变)	3	

图 20 零位状态下的加速度计安装与连接图

对被校机器人按如下所述进行编程:

 1)从试验路径起点开始,使机械接口保持姿态不变,以额定速度(或其 50%、 10%)沿路径运行至路径终点,再回到起点,待被校机器人达到静止状态时,为一个测 试循环。

2) 到达终点时,待被校机器人达到静止状态时,再向起点运动。

3)可无限制进行循环,待动态信号分析仪采集记录完整的3次循环的数据后,停止机器人的运动。

4) 对记录的运行数据进行去抖动处理,数据处理见 B.1。

5)分别读取每一个循环末端加速度的最大绝对值,重复3次计算其平均值。

7.2.14 末端抖动

在机器人零位状态下,将加速度计刚性连接在机器人的末端中心(见图 20),使加速度计的 *X*、*Y*、*Z*方向与机座坐标系重合,加速度计连接至动态信号分析仪。按表 13的试验条件进行校准。

对被校机器人按如下所述进行编程:

 1)从试验路径起点开始,使机械接口保持姿态不变,以额定速度(或其 50%、 10%)沿路径(直线,或大圆,或小圆)运行至路径终点,再回到起点,待被校机器人 30 达到静止状态时,为一个测试循环。

2) 到达终点时,待被校机器人达到静止状态时,再向起点运动。

3)可无限制进行循环,待动态信号分析仪采集记录完整的3次循环的数据后,停止机器人的运动。

4) 对记录的运行数据进行去运动分析获得抖动数据,数据处理见 B.2。

5)分别读取每一个循环末端的最大抖动幅值,重复3次计算其平均值。

7.2.15 固有频率

在机器人零位状态下,将加速度计刚性连接在机器人的末端中心(见图 20),使加速度计的 X、Y、Z 方向与机座坐标系重合,加速度计连接至动态信号分析仪,将力锤连接至动态信号分析仪。被校机器人的伺服系统通电、制动器脱开。按表 14 的试验条件进行校准。

负载	机器人状态
100%额定负载	零位状态
额定负载降至10%	(如有必要,可选用机器臂展开与水平成
(选用)	45°的一条线的状态)

本规范采用冲击激励法进行固有频率测试。用力锤沿 Y 方向定点敲击工业机器人的末端,向工业机器人提供一个瞬态的冲击力,动态信号分析仪拾取加速度响应。进行(3~5)次频域平均,得到频率响应函数,按频率值从小到大依次读取前面 4 阶(如有)极大值点为固有频率值。

7.2.16 动刚度

在机器人零位状态下,将加速度计刚性连接在机器人的末端中心(见图 20),使加速度计的 X、Y、Z 方向与机座坐标系重合,加速度计连接至动态信号分析仪,将力锤连接至动态信号分析仪。被校机器人的伺服系统通电、制动器脱开。按表 14 的试验条件分别进行校准。

本规范采用冲击激励法进行动刚度测试。用力锤沿 Y 方向定点敲击工业机器人的 末端,向工业机器人提供一个瞬态的冲击力,动态信号分析仪拾取加速度响应。进行 (3~5)次频域平均,得到动刚度曲线,即力与位移的复数比。

8 校准结果

校准结果应在校准证书上反映。校准证书应至少包括以下信息:

- a)标题:"校准证书";
- b) 实验室名称和地址;
- c)进行校准的地点(如果与实验室的地址不同);
- d) 证书的唯一性标识(如编号),每页及总页数的标识;
- e) 客户的名称和地址;
- f) 被校对象的描述和明确标识;

g)进行校准的日期,如果与校准结果的有效性和应用有关时,应说明被校对象的 接收日期;

h) 如果与校准结果的有效性或应用有关时, 应对被校样品的抽样程序进行说明;

i) 校准所依据的技术规范的标识,包括名称及代号;

j) 本次校准所用测量标准的溯源性及有效性说明;

- k) 校准环境的描述;
- 1) 校准结果及测量不确定度的说明;
- m) 对校准规范的偏离的说明;
- n) 校准证书或校准报告签发人的签名、职务或等效标识;
- o) 校准结果仅对被校对象有效的声明;

p) 未经实验室书面批准, 不得部分复制证书的声明。

9 复校时间间隔

建议复校间隔时间为1年。

由于复校间隔时间的长短是由仪器的使用情况、使用者、仪器本身质量等诸因素所 决定,因此送校单位可根据实际情况自主决定复校时间间隔。

附录 A

校准前准备工作

A.1 校准前提条件

根据制造商的建议安装机器人。

机器人装配完毕,并可全面操作。所有必要的校平操作、调整步骤及功能试验均应 圆满完成。

除位姿特性漂移特性校准应由冷态开始外,不管制造商是否有规定,其余校准在校 准前机器人应进行适当的预热。

若机器人具有由用户使用的、会影响被测特性的设备,或如果只能用特殊函数来记录特性(如离线编程给出的位姿校准设施)的设备,则校准中的状态必须在校准证书中说明,并且(与某种特性有关时)每次校准中均应保持不变。

A.2 位移测量原则

被测位置和姿态数据 (x_j 、 y_j 、 z_j 、 a_j 、 b_j 、 c_j) 应以机座坐标系 (GB/T 16977— 2019) 来表示,或以校准设备所确定的坐标系来表示。

若机器人指令位姿和路径由另一坐标系(如离线编程中使用)确定,而不是校准系统来确定,则必须把数据转换到一个公共坐标系中。用测量方法建立坐标系间的相互关系。在此情况下,7.2.1给出的测量位姿不能用作转换数据的参照位置。参照点和测量点需在试验立方体内,且彼此距离应尽可能大(例如,若 P_1 到 P_5 为测量点,则 C_1 、 C_2 、 C_3 、 C_4 、 C_5 可用作参照点)。

机座坐标系和所选坐标系的关系应在校准结果中说明。

测量点应离制造商指明的机械接口一段距离,该点在机械接口坐标系(GB/T 16977—2019)的位置应予记录(见图 A.7 指令位姿与实到位姿的关系)。

计算姿态偏差时所用的转动顺序,必须使姿态在数值上是连续的。绕动轴 [导航角 或欧拉角、矩阵(有顺序)]旋转,或绕静止轴旋转是没有关系的。

除非另有规定,应在实到位姿稳定后进行测量。

A.3 机械接口的负载

所有校准项目都应在100%额定负载条件下进行,即制造商规定的质量、重心位置 和惯性力矩。额定负载条件应在校准证书中注明。

为表征机器人与负载有关的性能,可采用如表 A.1 中指出的将额定负载降至 10% 或由制造商制定的其他数值进行附加试验。

如部分校准设备附加于机器人上,应把其质量和位置当作试验负载的一部分。

图 A.1 是校准用末端执行器的实例,其 CG (重心)和 TCP (工具中心点)有偏移。校准时,TCP 是测量点 (MP)。测量点的位置应在校准证书中说明。

33

JJF 2138—2024

表 A.1 校准负载

於准而日	使用负载			
(Y) 准坝 日	100%额定负载	额定负载减至10%		
位姿准确度和位姿重复性	•	0		
多方向位姿准确度变动	•	0		
距离准确度和距离重复性	•			
位置稳定时间	•	0		
位置超调量	•	0		
位姿特性漂移	•			
路径准确度和路径重复性	•	0		
重复定向路径准确度	•	0		
拐角偏差	•	0		
路径速度特性	•	0		
最小定位时间	•	0		
末端抖动		0		
振动加速度		0		

注**:**

注: 1 ●表示推荐,○表示选用, —表示不选。

2 可采用如表 A.1 中指出的将额定负载降至 10%或由制造商制定的其他数值进行附加试验。

图 A.1 校准用末端执行器实例

A.4 试验速度

所有位姿特性校准在指定位姿间可达到的最大速度下进行,即在每种情况下速度补 偿均置于 100%,并可在此速度的 50%和/或 10%下进行附加试验。

对于每一种路径特性,在制造商规定的额定路径速度的100%、50%和10%下进行 试验(见表 A.2)。在校准证书中应注明额定路径速度。每次试验所规定的速度取决于 路径的形状和尺寸。机器人至少能在试验路径50%的长度内达到此速度。此时,相关 的性能指标才是有效的。

如果可选择,应在校准证书中说明速度是以点位方式还是以连续路径方式来规定的。

表 A.2 给出推荐试验速度的汇总。

於准语日		试验速度	
	100%额定速度	50%额定速度	10%额定速度
位姿准确度和位姿重复性	•	· · ·	
多方向位姿准确度变动	•	· ·	
距离准确度和距离重复性	• 0	· · · ·	
位置稳定时间	•	0	
位置超调量		0	
位姿特性漂移	•		
路径准确度和路径重复性	•	•	•
重复定向路径准确度	•	•	•
拐角偏差	•	•	•
路径速度特性	•	•	•
最小定位时间	见	7.2.11 最小定位时间	
末端抖动	•	0	
振动加速度	•	0	

表 A.2 试验速度

A.5 试验位姿和跟踪路径定义

A.5.1 目的

本章说明如何确定定位于工作空间中立方体内一平面上的五个合适位置,还说明了 跟踪的试验路径。当机器人某轴运动范围较其他轴小时,可用长方体代替立方体。

A.5.2 立方体在工作空间中的位置

位于工作空间中的单个立方体,其顶点用 C₁~C₈ 表示(见图 A.2),应满足以下 要求:

一一立方体应位于工作空间中预期应用最多的那一部分;

一一立方体应具有最大的体积,且其棱边平行于机座坐标系。

 C_1

 $C_{\bar{u}}$

在校准证书中应以图形说明工作空间中所用的立方体的位置。

A.5.3 立方体内所用平面的位置

位姿试验应选用下列平面之一:

平面 (a) $C_1 - C_2 - C_7 - C_8$;

平面 (b)
$$C_2 - C_3 - C_8 - C_5;$$

- 平面 (c) $C_3 C_4 C_5 C_6$;
- 平面 (d) $C_4 C_1 C_6 C_7$;

校准证书中应指出选用了哪一个平面。表 A.3 给出了位姿特性所使用的位姿。

表 A.3 位姿特性中选用的位姿

			位姿		
() () () () () () () () () () () () () (P_1	P_2	P_3	\mathbf{P}_4	P_5
位姿准确度和位姿重复性	•	•	•	•	•
多方向位姿准确度变动	•	•		•	
距离准确度和距离重复性		•		•	
位置稳定时间	•	•	•	•	•
位置超调量	•	•	•	•	•
位姿特性漂移	•				

A.5.4 试验位姿

五个要测量的点位于测量平面的对角线上,并对应于选用平面的 P1~P5 加上轴向 36

(*X*_{MP}) 和径向(*Z*_{MP}) 测量点偏移。点 P₁~P₅ 是机器人手腕参考点的位置。 测量平面平行于选用平面,见图 A.3 和图 A.7。

制造商可规定试验位姿应以机座坐标系(最佳)和/或关节坐标系来确定。

 P_1 是对角线的交点,也是立方体的中心。 P_2 到 P_5 离对角线端点的距离等于对角线 长度的 (10±2)% (见图 A.4)。若不可能,则在证书中说明在对角线上所选择的点。

图 A.3 选用平面和测量平面

图 A.4 使用的位姿

说明:

L 为对角线长度。

示例平面 (a) $C_1 - C_2 - C_7 - C_8$ 和位姿 $P_1 - P_2 - P_3 - P_4 - P_5$

A.5.5 运动要求

当机器人在各位姿间运动时,所有关节均应运动。校准时,应注意不超出制造商操 作规范。

A.5.6 跟踪的路径

试验路径应位于图 A.5 所示的四个平面之一。对于6 轴机器人,除制造商特殊规 定外,应选用平面 1。对于少于6 轴的机器人,应由制造商指定选用哪个平面。

在路径特性校准时,机械接口的中心位置应位于选用平面上(见图 A.3),且姿态 相对于该平面应保持不变。 图 A.6 给出了在四个可用试验平面之一上的一条直线路径、一条矩形路径和两条 圆形路径的位置示例。

除测量拐角偏差外,试验路径的形状应是直线或圆。若采用其他形状的路径,制造 商应说明并附于校准证书中。

在立方体对角线上的直线路径,路径长度应是所选平面相对于顶点间距离的 80%,如图 A. 6 中 P₂ 到 P₄ 的距离是一实例。

另一直线路径 P₆ 到 P₉,可用于 7.5.3 中所述的重复定向试验。

对于圆形路径试验, 需测试两个不同的圆, 见图 A.6。

大圆的直径应为立方体边长的 80%,圆心为 P1。

小圆的直径应为同一平面中大圆直径的 10%, 圆心为 P₁, 见图 A.6。

应使用最少的数目的指令位姿。在校准证书中应说明指令位姿的数目、位置和编程 方法(示教编程、人工输入数字数据或离线编程)。

对于矩形路径,拐角记为 E_1 、 E_2 、 E_3 、 E_4 ,每个拐角离平面各顶点的距离为该平面对角线长度的 (10±2)%。在图 A.6 的实例中, P_2 、 P_3 、 P_4 、 P_5 和 E_1 、 E_2 、 E_3 、 E_4 重合。

图 A.5 试验路径定位平面的确定

图 A.6 试验路径实例

A.6 循环次数

表 A.4 给出校准每个项目时实施的循环次数。

表 A.4 循环次数

校准项目	循环次数
位姿准确度和位姿重复性	30
多方向位姿准确度变动	30
距离准确度和距离重复性	30
位置稳定时间	3
位置超调量	3
位姿特性漂移	连续循环 8 h 或达到稳定状态
路径准确度和路径重复性	10
重复定向路径准确度	10
拐角偏差	3
路径速度特性	10
最小定位时间	3
末端抖动	3
振动加速度	3

A.7 校准步骤

校准顺序对校准结果没有影响。为了确定测量停顿时间,建议先进行位置稳定时间 校准后,再进行位姿重复性校准。位姿超调量、位置准确度和重复性校准可同时进行。 位姿特性偏移校准应独立进行。

位姿特性校准应在点位或连续路径控制下进行,路径特性校准应在路径控制下进行。

如果校准设备允许,路径准确度及重复性校准可与路径速度特性校准同时进行。

建议路径速度特性校准在路径准确度校准之前进行,并使用相同的路径参数,这样可保证在确定路径时使用正确的参考量。进行此项校准前对各种试验路径先测量一次路 径速度特性,确定加、减速时间,以便保证机器人至少能在试验路径 50%的长度内达 到稳定速度。如果加、减速时间过长,不能达到此要求,机器人制造商应重新调整加、 减速时间。

当编程恒定路径速度时,应注意确保在机器人控制器上把速度补偿控制设为 100%,并保证机器人不因在跟踪路径上的任何限制而使速度自动减小。

除位姿特性漂移外,一种条件下每一特性的数据采集应在最短时间内进行。

校准时所有的程序延时,如测量停顿时间和测量时间应在校准证书中说明。

A.8 指令位姿的确定

指令位姿编程方法取决于机器人控制设备,并对准确度特性有重大影响。使用的数据输入方法应在数据表和校准证书中清楚地说明。

位姿及路径准确度的计算均涉及指令位姿数据。指令位姿是机器人运动编程时由指 令确定的机器人位置和姿态。为了计算准确度指标,指令位姿与校准设备测量的实到位 姿必须以同一坐标系表示。由于机器人运动编程方法的不同,指令位姿的确定方法也 不同。

图 A.7 指令位姿与实到位姿的关系

A.8.1 示教编程的指令位姿

无论是手把手示教还是用示教盒示教编程,编程时一旦将机器人引导到示教点 (P₁~P₅及大圆和小圆路径的几个特定点),即可用校准设备测出其位姿,这就是指令 位姿。显然,指令位姿与以后测出的实到位姿的坐标系相同,在计算准确度指标时无需 换算。由直线路径端点及大圆和小圆路径的几个特定点确定的理想直线和圆弧(大圆和 小圆路径可以用超过半圆的圆弧代替)即为指令路径。用这样的指令位姿和指令路径算 出的准确度实际上反映了机器人再现的准确性。 A.8.2 手动数据输入或离线编程的指令位姿

手动数据输入或离线编程时, P₁~P₅ 及大圆和小圆路径的几个特定点的指令位姿 一般是用机座坐标系表示的。而校准设备测得的实到位姿一般是用校准设备确定的测量 坐标系表示的。因而,在计算准确度指标时不能直接将指令位姿和实到位姿相比较。

这种编程方式的准确度指标是机器人运动学模型准确性的重要反映。在编程确定指 令位姿后,不能使机器人到达某一位姿点再用仪器测量其位姿作为指令位姿(虽然,此 位姿与以后测出的实到位姿的坐标系相同)。唯一正确的方法是求得机座坐标系与测量 坐标系的变换关系,称为坐标准直。不过,现有仪器很多不具有坐标准直的功能,有的 仪器虽有此功能,但准直的准确度难以保证。因此,重复性指标只涉及实到位姿,与表 示位姿的坐标系无关;而距离准确度虽涉及指令距离和实到距离,但由于不同坐标系的 距离不变性,计算指令距离时可用机座坐标系表示的指令位姿,计算实到距离时可用测 量坐标系表示的实到位姿。

A.9 专用夹具

采用激光跟踪仪测量机器人性能时,需要专用夹具在机器人未端安装目标靶球。夹 具要求质量轻,目标靶球与末端之间的无相对位移。试验负载根据试验条件固定在专用 夹具上。

专用夹具主要由靶球座和连接装置组成,可增加保护装置保护靶球防止意外摔落。 结构示意图如图 A.8 所示。

图 A.8 专用夹具示意图

附录 B

振动数据处理示例

B.1 振动加速度

第一步:取一个运动循环的 *X*、*Y*、*Z*数据,如图 B.1 所示,分别对应 Input 1(t), Input 2(t), Input 3(t),然后进行 FFT 分析,如图 B.2 所示。

图 B.2 原始信号 FFT 分析(线性幅值谱显示)

第二步: FFT 信号以线性幅值谱显示,观察谱图的幅值分布。图 B.2 中幅值峰值 分布集中在 2 Hz 以下。

第三步:在幅值分布频率基础上增加(2~3)Hz作为滤波截止频率,对数据进行低通滤波,去除抖动信号,如图B.3所示。

图 B.3 5 Hz 低通滤波后的时域信号

第四步:按同时刻合成末端加速度信号,读取末端加速度的最大值,如图 B.4 所示。

图 B.4 同时刻合成的末端加速度信号

B.2 末端抖动

第一步:取一个运动循环的*X*、*Y*、*Z*数据,如图 B.5 所示,分别对应 Input 1(t), Input 2(t), Input 3(t),然后进行 FFT 分析,如图 B.6 所示。

图 B.5 原始信号

图 B.6 原始信号 FFT 分析 (线性幅值谱显示)

第二步: FFT 信号以线性幅值谱显示,观察谱图的幅值分布。图 B.6 中幅值峰值 分布集中在 2 Hz 以下。

第三步:在幅值分布频率基础上增加(2~3)Hz作为滤波截止频率,对数据进行

高通滤波,去除运动信号,如图 B.7 所示。

第四步:对数据进行二次积分,获得抖动信号,如图 B.8 所示。

图 B.8 抖动信号

第五步:按同时刻合成末端抖动信号,读取末端最大抖动幅值,如图 B.9 所示。

图 B.7 5 Hz 高通滤波后的时域信号

图 B.9 同时刻合成的末端抖动信号

附录 C

位置距离准确度校准结果不确定度评定示例

C.1 位置距离准确度的校准

C.1.1 校准方法

位置距离准确度表示指令距离和实到距离平均值之间位置的差值。即工业机器人指 令距离与由激光跟踪仪和光学靶球重复测量 30 次,取其平均值作为实到距离的最佳估 计值的差值。被校机器人与校准设备按图 C.1 位置摆放,被校机器人和校准设备之间 应没有障碍物。

图 C.1 被校机器人与校准设备安装位置示意图

选择测试立方体和测试平面,并选取指令位姿 P₂ 和 P₄ 进行位置距离准确度校准 (如图 C.3)。被校机器人按表 C.1 的试验条件进行校准,循环方式按图 C.2 进行。

表 C.1 距离准确度和重复性试验条件

负载	速度	位姿	循环次数
100%额定负载	100%额定负载	$P_2 - P_4$	30

JJF 2138-2024

图 C.3 距离准确度

C.1.2 环境条件

温度: (θ±2)℃, θ一般为 20 ℃。

相对湿度: ≤80%。

C.1.3 校准设备

激光跟踪仪:

测量范围:绝对距离(0~160)m,测量半径(0~80)m,角度(0~360)°。

最大允许误差 (MPE): 绝对距离± (16 μm +0.8×10⁻⁶L), 其中 L 为实到距离 长度, 单位为 m。

C.1.4 被校对象

六轴工业机器人。

C.2 位置距离准确度校准结果不确定度的评定

C.2.1 测量模型

$$AD_p = D_c - D$$

式中:

AD_p----距离准确度, m;

D。——工业机器人指令距离, m;

D——30 次重复测量平均值作为实到距离, m。 其中:

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D$$

$$D_{j} = |P_{4j} - P_{2j}| = \sqrt{(x_{4j} - x_{2j})^{2} + (y_{4j} - y_{2j})^{2} + (z_{4j} - z_{2j})^{2}}$$

$$D_{c} = |P_{4} - P_{2}| = \sqrt{(x_{c4} - x_{c2})^{2} + (y_{c4} - y_{c2})^{2} + (z_{c4} - z_{c2})^{2}}$$

式中:

 x_{c4} 、 y_{c4} 、 z_{c4} ——P₄的指令位姿坐标;

 x_{c2} 、 y_{c2} 、 z_{c2} ——P₂的指令位姿坐标;

 x_{2j} 、 y_{2j} 、 z_{2j} ——P₂ 第 j 次实到位姿的坐标;

n——重复次数。

由测量原理和测量方法,可将距离测量误差模型转化为:

$$AD_{p} \approx D_{c} - D + D \,\delta_{a}\theta + D \,\alpha_{s}\delta_{\theta}$$

式中:

 δ_{α} ——校准设备膨胀系数的相对变化量;

θ ——测量温度与 20 ℃参<mark>考温</mark>度的差值。

C.2.2 不确定度传播律

由于各输入分量的不确定度之间不相关,所以合成标准不确定度的计算公式为:

 $u_{c}(AD_{p}) = \sqrt{c_{1}^{2}u^{2}(D_{c}) + c_{2}^{2}u^{2}(\overline{D}) + c_{3}^{2}u^{2}(\theta) + c_{4}^{2}u^{2}(\delta_{a}) + c_{5}^{2}u^{2}(\alpha_{s}) + c_{6}^{2}u^{2}(\delta_{\theta})}$ C. 2. 3 灵敏系数

$$c_{1} = \frac{\partial AD_{p}}{\partial D_{c}} = 1$$

$$c_{2} = \frac{\partial AD_{p}}{\partial \overline{D}} = -1 + (\delta_{a}\theta + \alpha_{s}\delta_{\theta})$$

$$c_{3} = \frac{\partial AD_{p}}{\partial \theta} = \overline{D}\delta_{a} \approx 0$$

 ≈ -1

$$c_{4} = \frac{\partial AD_{\rho}}{\partial \delta_{\alpha}} = \overline{D}\theta$$
$$c_{5} = \frac{\partial AD_{\rho}}{\partial \alpha_{s}} = \overline{D}\delta_{\theta} \approx 0$$

49

$$c_{6} = \frac{\partial AD_{p}}{\partial \delta_{\theta}} = \overline{D}\alpha_{s}$$

其中,由于校准过程中校准设备膨胀系数相对变化量 δ_a 和测量温度的相对变化量 δ_{θ} 很小,故可认为 c_3 、 c_5 近似为零。

$$u_{c}(\delta) = \sqrt{u^{2}(D_{c}) + u^{2}(\overline{D}) + (\overline{D}\theta)^{2}u^{2}(\delta_{a}) + (\overline{D}\alpha_{s})^{2}u^{2}(\delta_{\theta})}$$

C.3 不确定度分量评定

C.3.1 由测量重复性引入的不确定度分量 u_{Dc}

用激光跟踪仪对工业机器人工作空间内的指令位姿 P_1 、 P_2 (指令距离为L = 658.535 mm)间的实际距离进行 30 次重复测量,测量结果详见表 C.2。

测量次数	D_i/mm	测量次数	D_i/mm	测量次数	$D_i/{ m mm}$
1	658.432 9	11	658.437 7	21	658.451 9
2	658.434 7	12	658.453 3	22	658.456 3
3	658.435 6	13	658.441 6	23	658.444 3
4	658.441 5	14	658. 456 1	24	658.455 7
5	658.452 9	15	658.448 7	25	658.460 9
6	658.435 2	16	658. 445 2	26	658.455 6
7	658.440 3	17	658.452 2	27	658.435 9
8	658.440 4	18	658.442 5	28	658.454 3
9	658.441 6	19	658.447 2	29	658.450 7
10	658.445 6	20	658.453 5	30	658.451 5
		$\overline{D} = 658.4$	46 5 mm		·

表 C.2 重复性测量结果

采用 30 次测量结果的平均值作为最终结果的最佳估计值,服从 *t* 分布,属于 A 类 评定,则用统计的方法得到实验标准偏差:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (D_i - \overline{D})^2}{n-1}} = 0.007 89 \text{ mm}$$

则被测量估计值 A 类不确定度评定:

$$u_{D_c} = \sqrt{\frac{\sum_{i=1}^{n} (D_i - \overline{D})^2}{n(n-1)}} = 1.44 \ \mu \text{m}$$

C.3.2 校准设备引入的不确定度分量 u_D

C.3.2.1 由激光跟踪仪线性测量误差引入的不确定度分量 u_{D1}

激光跟踪仪的线性 ADM 最大允许误差为±(16 μm+0.8×10⁻⁶L),其中 L 为 658.446 5 mm,服从均匀分布,属于 B 类评定,则线性测量误差引入的不确定度分量为:

50

$$u_{\overline{p}_1} = \frac{a_{21}}{\sqrt{3}} = \frac{16.53 \ \mu \text{m}}{\sqrt{3}} \approx 9.54 \ \mu \text{m}$$

C.3.2.2 由校准点坐标转换计算误差所引入的不确定度分量 u D2

在工业机器人位置距离准确度的校准中,测量坐标为球坐标,计算坐标为笛卡尔坐标,在坐标转换过程中,假设跟踪仪的最小分辨率误差 *a*²² 为 1 μm,服从均匀分布,属于 B 类评定,则测量点坐标转换计算误差所引入的不确定度分量为:

$$u_{\overline{D}_2} = \frac{a_{22}}{2\sqrt{3}} = \frac{1 \ \mu m}{2\sqrt{3}} \approx 0.29 \ \mu m$$

C.3.3 由校准设备膨胀系数所引入的不确定度分量 u_{δa}

在校准过程中,估计校准设备的膨胀系数 α 在±2×10⁻⁶ ℃⁻¹区间内,服从均匀分 布,属于 B 类评定,膨胀系数所引入的不确定度分量为:

$$u_{\delta_a} = \frac{2 \times 10^{-6} \ ^{\circ} \text{C}^{-1}}{\sqrt{3}} \approx 1.15 \times 10^{-6} \ ^{\circ} \text{C}$$

C.3.4 被校机器人与校准设备温度差引入的不确定度分量 u_δ,

在校准过程中,由于被校机器人与校准设备存在温度差,温差估计以等概率落在 ±0.5℃区间内,服从均匀分布,属于 B 类评定,则由温度差所引入的不确定度分 量为:

$$u_{\delta_{\theta}1} = \frac{0.5 \ ^{\circ}\mathrm{C}}{\sqrt{3}} \approx 0.29 \ ^{\circ}\mathrm{C}$$

在校准过程中,温度测量误差在±0.015 ℃区间内,服从均匀分布,属于 B 类评 定,则由温度测量误差所引入的不确定度分量为:

$$u_{\delta_{\theta}2} = \frac{0.015 \ \C}{\sqrt{3}} \approx 0.008 \ 7 \ \C$$

C.3.5 标准不确定度分量的一览表

表 C.3 标准不确定度分量的一览表

标准不确定 度分量符号 <i>u</i> (<i>x_i</i>)	不确定度 来源	标准不确 定度分量 的值	灵敏系数 $c_i = \frac{\partial f}{\partial x_i}$	分量的不确 定度贡献 $ c_i u(x_i)$	分布特征
u_{D_c}	测量重复性	1.44 μm	1	1.44 μm	t 分布
$u_{\overline{D}_1}$	校准设备	9.54 μm	-1	9.54 μm	均匀分布
$u_{\overline{D}_2}$	校准设备	0.29 μm	-1	0.29 μm	均匀分布
$u_{\delta_{\alpha}}$	膨胀系数	1.15×10^{-6} °C ⁻¹	$1.32 \times 10^3 \ \mu \mathrm{m}^{\circ}\mathrm{C}$	1.51 μm	均匀分布
$u_{\delta \theta 1}$	温度差	0.29 °C	7. 57×10 ⁻³ μ m°C ⁻¹	2.20 μm	均匀分布
$u_{\delta \theta 2}$	温度测量误差	0.0087 ℃	7. 57×10 ⁻³ μ m°C ⁻¹	6.59×10 ⁻⁵ μ m	均匀分布

C.3.6 合成标准不确定度

由于各输入分量的不确定度之间互不相关,则

$$u_{c}(AD_{p}) = \sqrt{u_{D_{c}}^{2} + u_{\overline{b}_{1}}^{2} + u_{\overline{b}_{2}}^{2} + u_{\delta_{a}}^{2} + u_{\delta_{\theta}1}^{2} + u_{\delta_{\theta}2}^{2}}$$

= $\sqrt{1.44^{2} + 9.54^{2} + 0.29^{2} + 1.51^{2} + 2.20^{2} + (6.59 \times 10^{-5})^{2}} \,\mu\text{m}$
 $\approx 10.0 \,\mu\text{m}$

C.3.7 扩展不确定度

取包含因子 k=2,则工业机器人位置距离准确度校准结果的扩展不确定度为: $U(AD_p) = ku_c(AD_p) = 2 \times 10.0 \ \mu m = 20 \ \mu m, \ k = 2$

附录 D

振动加速度校准结果不确定度评定示例

D.1 振动加速度的校准

D.1.1 计量校准器具:

D.1.1.1 动态信号分析仪:测量范围为频率(5~20000)Hz,最大允许误差±0.5%,加速度峰值(0.1~981)m/s²。

D.1.1.2 加速度计的不确定度:频率范围为(0.5~200) Hz,测量不确定度 $U_{rel} = 2\%$ (k = 2)。

D.1.2 被测对象: 六轴工业机器人。

D.1.3 测量方法:

在机器人回零状态下,将三轴向加速度计分别刚性连接到图 20 所示的测点位置的 正确的安装机面,使三轴向加速度计的 *X*、*Y*、*Z*方向与机座坐标系重合。加速度计通 过适调放大器连接至多通道动态信号分析仪。按表 D.1 的试验条件进行校准。

被校机器人的编程使机器人运行一条轨迹,在轨迹起点和终点位置分别停顿,待被 校机器人达到静止状态。

开启机器人运行,动态信号分析仪记录运动过程中的振动加速度数据,设置线性幅 值谱,读取整个过程中 50 Hz 频宽内最大的振动加速度幅值和最大加速度对应的频率 值。循环运行 3 次,计算 3 次循环的平均值。

负载	速度	轨迹形状	循环次数
100%额定负载	100% <mark>额定速</mark> 度 50%额定速度 10%额定速度	直线轨迹 E ₁ -E ₃	2
额定负载降至 10% (选用)	100%额定速度 50%额定速度 10%额定速度	圆形轨迹 大圆和小圆	0

表 D.1 振动加速度试验条件

D.2 测量模型

$$\Delta = a_x - a_s$$

式中:

 Δ ——振动加速度测量误差值;

*a*_x——被校工业机器人的示值;

a。——动态信号分析仪的示值。

D.3 不确定度传播律

$$u_{\rm c} = \sqrt{\sum_{i=1}^n c_i^2 u_i^2}$$

各输入量的不确定度之间互不相关,式中,灵敏系数 $c_1 = 1, c_2 = -1$ 。

D.4 不确定度评定

以六轴工业机器人为例。其噪声有效值一般在 0.2 m/s² 左右,所以一般小幅值测量不低于 5 m/s²,以便于读数。

评定其在 160 Hz, 100.00 m/s² 处的测量扩展不确定度。

D.4.1 动态信号分析仪引入的不确定度 uas Irel

动态信号分析仪的最大允差为±0.5%,其半宽为 0.5%,服从均匀分布,属于 B 类评定,则:

$$u_{as \ 1rel} = \frac{0.5\%}{\sqrt{3}} \approx 0.289\%$$

D.4.2 加速度计测量引入的不确定度 u_{as 2rel}

加速度计测量的不确定度为 2%, *k*=2,则加速度计测量的不确定度带来的不确定 度为:

$$u_{as 2rel} = \frac{2\%}{2} = 1\%$$

D.4.3 加速度传感器年稳定度引入的不确定度 u_{as 3rel} 加速度传感器的年稳定度为 1%, 服从均匀分布,属于 B 类评定。

$$u_{as 3rel} = \frac{1\%}{\sqrt{3}} \approx 0.577\%$$

D.4.4 横向振动的影响引入的不确定度 u_{as 4rel}

加速度传感器的横向灵敏度 s_v 为 5%,横向振动在 20 Hz < f < 500 Hz 时 a_T 为 10%。 其整个方向内的影响量 $\sigma = s_v \times a_T$,服从均匀分布,属于 B 类评定。

$$u_{as} \frac{1}{4rel} = \frac{0.5\%}{\sqrt{3}} \approx 0.289\%$$

D.4.5 环境温度的影响引入的不确定度 uas 5rel

根据资料,加速度计在工作条件 (θ ±2)℃变化值为 0.02%/℃,温度影响为 0.02%/℃×2 ℃=0.04%,服从均匀分布,属于 B类评定。

$$u_{as \; 5rel} = \frac{0.\; 04 \frac{\%}{\sqrt{3}}}{\sqrt{3}} \approx 0.\; 023 \frac{\%}{\sqrt{3}}$$

D.4.6 安装参数(电缆、插座、扭矩)对加速度传感器的影响引入的不确定度 u_{as 6rel}

安装参数(电缆、插座、扭矩)对加速度传感器的影响最大为 0.05%, 服从均匀 分布,属于 B 类评定。

$$u_{as \ 6rel} = \frac{0.05\%}{\sqrt{3}} \approx 0.029\%$$

D.4.7 工业机器人重复性引入的不确定度 uax rel

用动态信号分析仪、传感器测量工业机器人受击振后,在 20 Hz 和 160 Hz 下的振幅,服从 *t* 分布,属于 A 类评定,则不确定度见表 D.2。

表
訠
据
数
剾刪
貳
复
畺
2
D.
表

20 Hz

担任					测得值	直/mV					亚场店/…1	标准偏差/	不确定度
王,王,		5	ŝ	4	Q	9	2	∞	6	10	十3週(四)	тV	$oldsymbol{u}_{ax\ irel}/\%$
A1	5 000.71	5 000.71	5 000.72	5 000.73	5 000.7	5 000.72	5 000.72	5 000.75	5 000.71	5 000.72	5 000. 718 90	0.012 142	0.000077
A2	999.112	999.104	999.103	999.095	999.086	999.09	999.100 0	999.093	999.097	999.102	999.098 10	0.007 809	0.000 247
A3	99.721 0	99.7111	99.7065	99. 715 9	99.7072	99.7108	99.7158	99.7118	99.7178	99.7209	99.713 88	0.005 204	0.001 650
160 H	Z												
世代					测得值	值/mV					亚村店/…17	标准偏差/	不确定度
₩亩1目	1	2	3	4	5	9	7	8	6	10	₩₩₩	mV	$oldsymbol{u}_{axi\mathrm{rel}}/\%$
A1	5 000.48	5 000.49	5 000.44	5 000.44	5 000.44	5 000.46	5 000.47	5 000.45	5 000.44	5 000.44	5 000.455 1	0.017782	0.000 112

0.000 112

JJF 2138-2024

103

0.000

0.003 244

999.043 68

999.044

999.043

999.037

999.04

999.046

999.044

999.046

999.048

999.047

999.044

A2

404

0.000

275

0.001

13

99.804

99.8025

99.8036

99.806 0

99.8045

99.805 3

99.8044

99.8041

99.8039

99.8018

 \sim

99.805

 $\mathbf{A3}$

20 1 Con

55

D.5 合成标准不确定度

D.5.1 主要不确定度汇总见表 D.3, 以(160 Hz, 100.00 m/s²)为例

表 D.3 主要不确定度汇总

不确定度分量 u _s	不确定度来源	u _i 的值	灵敏系数 c _i	$ c_i u_i$
$u_{as \ 1rel}$	动态信号分析仪	0.289%	1	0.289%
$u_{as 2rel}$	加速度计测量	1.00%	1	1.00%
$u_{as 3rel}$	加速度传感器年稳定度	0.577%	1	0.577%
$u_{as 4 { m rel}}$	横向振动	0.289%	1	0.289%
$u_{as 5 { m rel}}$	环境温度的影响	0.023%	1	0.023%
$u_{as \ 6 { m rel}}$	安装参数	0.029%	1	0.029%
$u_{ax m rel}$	测量重复性	表 D. 2	1	表 D. 2

D.5.2 合成标准不确定度

以上各项不确定度分量是互不相关的,所以合成标准不确定度为:

$$u_{\text{crel}}(y) = \sqrt{u_{as}^2} + u_{as}^2 +$$

D.5.3 扩展不确定度

取包含因子k=2,则扩展不确定度 U_{rel} 如下所示。

20 Hz

幅值	平均值/mv	$u_{axi}/\%$	$u_{as rel}/\%$	$u_{\rm crel}/\frac{0}{0}$	$U_{ m rel}/\%$
A1	5 000.718 90	0.000 077	1.23	1.23	2.3
A2	999.098 10 <	0.000 <mark>24</mark> 7	1.23	1.23	2. 3
A3	99.713 88	0.001 650	1.23	1.23	2.3

160 Hz

幅值	平均值/mv	$u_{axi}/ \frac{0}{0}$	$u_{as rel} / \frac{0}{0}$	$u_{\rm crel}/\%$	$U_{ m rel}/\%$
A1	5 000.455 1	0.000 112	1.23	1.23	2.3
A2	999.043 68	0.000 103	1.23	1.23	2.3
A3	99.804 13	0.000 404	1.23	1.23	2.3

附录 E

校准原始记录模板

(仅供参考)

委托单位名称	7			委托单位地址	-		
名称				型号规格			
制造厂商				出厂编号			
工作性质				工作地址	P,		
环境温度			C	相对湿度	5.4		0⁄0
校准依据				All J.			
本次校准所用 主要计量器具	ŕ	名称	型号规格	准确度等级/最大 允许误差/不确定度	证	书编号	有效期至
计量器具使用前	前后状君	态检查		异常情况	说明		
校准人员				核验人员			
校准日期				有效日期 (涉及时)			

注:表 E.1~表 E.11 仅供参考。

	z/mm										
$\mathbf{P}_{_{\mathrm{I}}}$	y/mm										
	x/mm										
	z/mm										
$\mathbf{P}_{_2}$	y/mm							6	3		
	x/mm									Sh.	
	z/mm						27	3	•		
$\mathbf{P}_{_{3}}$	y/mm				Ø						
	x/mm										
	z/mm										
P_4	y/mm										
	x/mm										
	z/mm										
\mathbf{P}_{5}	y/mm										
	x/mm										

表 E.1 位姿准确度及重复性校准数据

			 	 	 		 		1
		c(0)							
		(0) q							
		<i>a</i> (0)							
	P	z/mm							Æ
<u>+</u>		y/mm						<u> </u>	S.Con
		x/mm				1			Sine
		c (0)							
Ĭ		p(0)							
		a (0)							
	$\mathbf{P}_{_{4}}$	z/mm							
		y/mm							
		x/mm							

表 B.2 距离准确度和距离重复性

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	r		1			ו
$ \begin{array}{ $		c (0)						
$\begin{array}{ $		p(0)						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		a (0)						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ŀ	z/mm						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		y/mm						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		x/mm						Æ
P_1 x/\min y/\min z/\min $a(0)$ $b(0)$ $b(0)$ x/\min z/\min $a(0)$ $b(0)$ $b(0)$ $b(0)$ $a(0)$ $b(0)$ $c(0)$ x/\min $a(0)$ $b(0)$ $a(0)$ $b(0)$ $c(0)$ x/\min $a(0)$ $b(0)$ $a(0)$ $b(0)$ $c(0)$ x/\min $a(0)$ $b(0)$ $a(0)$ $b(0)$ $c(0)$ $a(0)$ $b(0)$ $a(0)$ $b(0)$ $c(0)$ $a(0)$ $b(0)$ $a(0)$ $b(0)$ $a(0)$ $b(0)$ $a(0)$ $a(0)$ $b(0)$ $a(0)$ $b(0)$ $a(0)$ $a(0)$ $b(0)$ $a(0)$ $b(0)$ $a(0)$ $a(0)$ $b(0)$ $a(0)$ $a(0)$ $b(0)$ $a(0)$ <th></th> <td>c (0)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AN ON</td>		c (0)						AN ON
P1 x/mm y/mm z/mm $a(0)$ $b(0)$ $c(0)$ x/mm $a(0)$ x/mm x/mm x/mm x/mm $a(0)$ $a(0)$ $a(0)$ m m $a(0)$ $b(0)$ $c(0)$ x/mm x/mm $a(0)$ m m $a(0)$ $b(0)$ $c(0)$ x/mm x/mm $a(0)$ m m $a(0)$ $b(0)$ $c(0)$ x/mm x/mm $a(0)$ m m m $a(0)$ $b(0)$ $c(0)$ x/mm $a(0)$ m m m m m m $a(0)$ $a(0)$ m m m m m m m $a(0)$		<i>b</i> (0)					9	an i
P_1 x/mm y/mm z/mm y/mm z/mm $a(o)$ $b(o)$ $c(o)$ x/mm z/mm		a (0)				1		2~
P1 x/mm y/mm z/mm a(o) b(o) z/mm y/mm x/mm y/mm z/mm a(o) b(o) z/mm y/mm x/mu z/mu a(o) b(o) c(o) x/mm y/mm x/mu z/mu a(o) b(o) c(o) x/mm y/mm a a a a a a a a a a a a a a a a a a a a a a a a a a a a a	L L	z/mm					C	
P_1 x/mm y/mm z/mm a(o) b(o) c(o) x/mm x/mn s/mn a(o) b(o) c(o) x/mm a a a a a a a a a a a a a a a a a a a a a a a a a		y/mm						
P_1 x/mm y/mm z/mm $a(o)$ $b(o)$ $c(o)$ x/mm $a(o)$ $b(o)$ $c(o)$ $c(o)$ $a(o)$ $b(o)$ $c(o)$ $c(o)$ $a(o)$ $b(o)$ $c(o)$ $c(o)$ $a(o)$ $b(o)$ $c(o)$		x/mm						
P_1 x/mm y/mm z/mm a(o) b(o) a a a a b a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a<		c (0)						
P_1 x/mm y/mm z/mm a (o) multiple a (o) a (o) multiple a (o)		p(0)						
A x/mm z/mm	1	a (0)						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		z/mm						
x/mm		y/mm						
		x/mm						

		r	 			r	r	r	1
	c(0)								
	(0)								
(小風)	<i>a</i> (0)								
圆形路径	z/mm								
<u></u>	y/mm								
	x/mm								Æ
	c(0)								11.5
	<i>b</i> (0)								in in
(大圆)	<i>a</i> (0)					1			F.J.W
圆形路径	z/mm								
	y/mm		7	1					
	x/mm								
	c(0)								
((o)q								
$(E_1 - E_2)$	a (0)								
线路径	z/mm								
単	y/mm								
	x/mm								

表 E.4 路径准确度及重复性

61

						 r	r		r			
	$-\mathbf{P}_6-\mathbf{P}_7$	z/mm										
定位时间	折线路径: $P_3 - P_4 - P_5$	y/mm										
	$\mathbf{P}_1 - \mathbf{P}_2 -$	x/mm										
角度	(⁶	z/mm										Æ
定向路径准砌	路径(P ₆ —I	y/mm							Ś			ON
重复	直线	x/mm				1				S		
		c(0)										
		p(0)										
生漂移		a (0)										
位姿特性	P	z/mm										
		y/mm						<u></u>				
		x/mm										
	位姿特性漂移	位姿特性漂移 重复定向路径准确度 定位时间 P_1 P_1 $P_1 - P_2 - P_3 - P_4 - P_5 - P_7$	位姿特性漂移重复定向路径准确度定位时间x/mny/mnz/mna(0)b(0)c(0)x/mny/mn y/mn y/mn y/mn z/mn	位姿特性漂移重复定向路径准确度定位时间×P1*×P1*××*××*××*××*×××	$\widehat{\ (\hat{\ (\hat{\ (\hat{\ (\hat{\ (\hat{\ (\hat{\ ((\hat{\ (\hat{\ (\hat{\ ((\hat{\ (\hat{\ ((\hat{\ (} (\hat{\ (() })}})})}})}})}})})I_{i})$	λ Δ	I_{a}	I_{a}	I_{a}	<u>Intro Intro <u>Intro Intro x/mm y/mm z/mm x/mm x/mm z/mm y/mm z/mm z/mm z/mm x/mm y/mm z/mm z/mm z/mm z/mm z/mm z/mm z/mm z/mm x/mm z/mm a(o) b(o) c(o) x/mm z/mm z/mm z/mm z/mm x/mu z/m z/m z/mm z/mm<!--</u--></u></u></u></u></u></u></u></u></u></u></u></u>	Möşktuğa Egicialıskanı Egicialıskanı Edutial x/mu y/mu z/mu a(o) b(o) z(m) p<-p_s-p_s-p_s-p_s-p_s-p_s-p_s-p_s-p_s-p_s	

位姿特性漂移、重复定向路径准确度和定位时间 F. 7

1				-										1	
	SC_{-z}														
	$-d_z$ mm														
	SC_{+z}														
	$+d_z$ mm														
	SC_{-y}										2	Z	2		
	$-d_y$ mm							0			50	Ś			
訫 态柔顺性	SC_{+y}					1				55	2				
表 E. 8	$+d_{y}$ mm							10							
	SC_{-x}														
	$-d_x$ mm														
	SC_{+x}														
	$+d_x$ mm														
	力值 F N														
	载荷 %	10	$\overline{SC}_{10\%}$		20		$\overline{SC}_{20\%}$		30		\overline{SC} 30%		40		$\overline{SC}_{40\%}$

64

SC_{-z}												
$-d_z$ mm												
SC_{+z}												
$+d_{z}$ mm					-				•			
SC_{-y}										4	2	
					-	~				ç		
SC_{+y}				1		5		55				
$+d_{y}$ mm									-			
SC_{-x}												
$-d_x$ mm					-				•			
SC_{+x}												
$+d_x$ mm												
力值 F N												
载 水 水	50	\overline{SC} 50%	60		<u>SC</u> 60%		70		\overline{SC} 70%		80	$\overline{SC}_{80\%}$

表 E. 8 (续)

	SC_{-z}						
	$-d_z$ mm						
	SC_{+z}						
	$+d_z$ mm						
	SC_{-y}						A HAN
	$-d_y$ mm						
(头)	SC_{+y}				1		
₩ T. 0	$+d_y$ mm						ALC.
	SC_{-x}						
	$-d_x$ mm						
	SC_{+x}						
	$+d_x$ mm						
	力值 F N						
	载 。 》	06	$\overline{SC}_{90\%}$	100		\overline{SC} 100%	

JJF 2138—2024

表 E.9 振动加速度

运行路径			负载	
速度			滤波频率/Hz	
	第1次	第2次	第3次	平均值
不响加还度/(m/s)				

表 E.10 末端抖动

运行路径			负载	
速度			滤波频率/Hz	
主进划动/mm	第1次	第2次	第3次	平均值
不晒升劲/ 11111				

表 E.11 固有频率

机器人状态				
固有频率/Hz	X 轴	Y 轴	Z 轴	
1		and s		
2		18,S		
3				
4		1 hrs		

附录 F

校准证书内页格式

校准结果

表 F.1 位姿准确度与位姿重复性

负载	速度	P_1		P_2		\mathbf{P}_3	P_4	P_5	U (k=2)
100% 额定负载	100%和 50% 和/或 10%额 定速度	$AP_{p} = $ $AP_{a} = $ $AP_{b} = $ $AP_{c} = $	$RP_{l} = RP_{a} = RP_{b} = RP_{c} =$	$AP_{p} = $ $AP_{a} = $ $AP_{b} = $ $AP_{c} = $	$RP_{l} = RP_{a} = RP_{b} = RP_{c} =$				
10% 额定负载	100%和 50% 和/或 10%额 定速度	$AP_{p} = $ $AP_{a} = $ $AP_{b} = $ $AP_{c} = $	$RP_{l} = RP_{a} = RP_{b} = RP_{c} =$	 			h		

表 F.2 多方向位姿准确度

负载	速度	P	P_2	\mathbf{P}_4	$U \\ (k=2)$
100%额定负载		$vAP_p =$	$vAP_{p} =$	•••	
	或 10% 额定速度	$vAP_{a} =$ $vAP_{b} =$	$vAP_{a} =$ $vAP_{b} =$	•••	
		$vAP_c =$	$vAP_c =$	•••	
10%额定负载		$vAP_{p} =$			
	100%和 50%和/	$vAP_a =$			
	或 10%额定速度	$vAP_b =$	•••		
		$vAP_{c} =$	•••	•••	

表 F.3 距离准确度与距离重复性

负载	速度	D		$U \\ (k=2)$
100%额定负载	100%和 50%和/ 或 10%额定速度	$AD_{p} =$ $AD_{a} =$ $AD_{b} =$ $AD_{c} =$	$RD_{l} =$ $RD_{a} =$ $RD_{b} =$ $RD_{c} =$	
编制方法:				
JJF 2138—2024

表 F.4 位置稳定时间与超调量

负载	速度	P_{1}	门限带	U(k=2)
100%额定负载	100%和 50%和/ 或 10%额定速度	t = OV =	规定的门限:	
10%额定负载	100%和 50%和/ 或 10%额定速度	t = OV =	规定的门限:	

表 F.5 位姿特性漂移

位置准确度漂移	$dAP_{p} =$	U(k=2)
	$dAP_a =$	
姿态准确度漂移	$dAP_b =$	
	$dAP_{c} =$	
位置重复性漂移	$dRP_{p} =$	
	$dRP_a =$	
姿态重复性漂移	$dRP_b =$	
	$dRP_{c} =$	

表 F.6 路径速度准确度、路径重复性与重复定向准确度

负载	速度	路径形状与长度	准确度	重复性	重复定向准确度	U(k=2)
			$AT_{p} =$	$RT_{p} =$		
100%	100%和 50%和/		$AT_a =$	$RT_a =$		
额定负载	或 10% 额定速度		$AT_b =$	$RT_b =$	AI_p	
			$AT_{c} =$	$RT_c =$		
			$AT_{p} =$	$RT_{p} =$		
10%	100%和 50%和/		$AT_a =$	$RT_a =$	AT -	
额定负载	或 10% 额定速度		$AT_b =$	$RT_{b} =$		
			$AT_{c} =$	$RT_{c} =$		

表 F.7 拐角偏差

负载	速度	速度下降量	拐角超调	拐角偏差	U(k=2)
100%额定负载	100%和 50%和/或 10%额定速度		CO=	CR =	
最大额定路径速度				m/s	
拐角处最大路径速度的下降量				m/s	
拐角处路径速度下降的起点与终点之间的距离				mm	

JJF 2138—2024

表 F.8 路径速度准确度、重复性和波动

负载	速度	路径速 准确]	ē度 度	路径速 重复	E度 性	路径速 波动	ē度 b	U(k=2)
100%额定负载	100%和 50%和/ 或 10%额定速度	AV =	%	RV =	0⁄0	FV =	%	
10%额定负载	100%和 50%和/ 或 10%额定速度	AV =	%	RV =	⁰∕₀	FV =	0⁄0	
(选用路径形状与长度)								

表 F.9 最小定位时间

起始位姿	到达位姿	距离/mm	时间/s
P_1	P_{1+1}		3
P_{1+1}	P_{1+2}	20	n n
•••	•••	Co.	0
U(k	=2)	O XIV	•
所用速度		200	

表 F.10 静态柔顺性

力的方向	+X	-X	+Y	-Y	+Z	-Z
力的大小	N	N	N	N	N	N
柔顺性	mm/N	mm/N	mm/N	mm/N	mm/N	mm/N
U(k	=2)					

表 F.11 振动加速度

负载	速度	路径形状与长度	最大加速度/(m/s ²)
100%额定负载	100%和 50%和/ 或 10%额定速度		
10%额定负载	100%和 50%和/ 或 10%额定速度		
U(k	=2)		
所用滤波频率			

JJF 2138—2024

表 F.12 末端抖动

负载	速度	路径形状与长度	末端抖动/mm
100%额定负载	100%和 50%和/ 或 10%额定速度		
10%额定负载	100%和 50%和/ 或 10%额定速度		
U(k	=2)		
所用滤波频率			

表 F.13 固有频率

机器人状态			
固有频率/Hz	X 轴	Y 轴	<i>Z</i> 轴
1			
2			
3			
4	2	N.S.	
U(k	=2)		

