

HDS200 单通道系列手持示波器 用户手册

- **HDS241**
- **HDS271**

官方微信,一扫即得

如需资料下载,请登录: www.owon.com.cn/download

※:本用户手册中的插图、界面、图标、界面中的字符可能和实际产品略有不同, 请以实际产品为准。

2024.11 版本 V1.0.3

©福建利利普光电科技有限公司版权所有,保留所有权利。

OWON 产品受专利权的保护,包括已取得的和正在申请的专利。本文中的信息将取代所有以前出版资料中的信息。

本手册信息在印刷时是正确的。然而,福建利利普光电科技有限公司将继续改进 产品并且保留在任何时候不经通知的情况下变动规格的权利。

OWOn® 是福建利利普光电科技有限公司的注册商标。

福建利利普光电科技有限公司

福建漳州市蓝田工业开发区鹤鸣路(原横三路)19号利利普光电科技楼

保修概要

本公司保证,本产品从本公司最初购买之日起**3**年(配件**1**年)期间,不会出现材料和工艺缺陷。配件如表笔等保修期**1**年。本有限保修仅适于原购买者且不得转让第三方。如果产品在保修期内确有缺陷,则本公司将按照完整的保修声明所述,提供维修或更换服务。

如果在适用的保修期内证明产品有缺陷,本公司可自行决定是修复有缺陷的 产品且不收部件和人工费用,还是用同等产品(由本公司决定)更换有缺陷的产 品。本公司作保修用途的部件、模块和更换产品可能是全新的,或者经维修具有 相当于新产品的性能。所有更换的部件、模块和产品将成为本公司的财产。

为获得本保证承诺的服务,客户必须在适用的保修期内向本公司通报缺陷, 并为服务的履行做适当安排。客户应负责将有缺陷的产品装箱并运送到本公司指 定的维修中心,同时提供原购买者的购买证明副本。

本保证不适用于由于意外、机器部件的正常磨损、在产品规定的范围之外使用、使用不当或者维护保养不当或不足而造成的任何缺陷、故障或损坏。

本公司根据本保证的规定无义务提供以下服务: a) 维修由非本公司服务代表人员对产品进行安装、维修或维护所导致的损坏; b) 维修由于使用不当或与不兼容的设备连接造成的损坏; c) 维修由于使用非本公司提供的电源而造成的任何损坏或故障; d) 维修已改动或者与其他产品集成的产品(如果这种改动或集成会增加产品维修的时间或难度)。

若需要服务,请与最近的本公司销售和服务办事处联系。

除此概要或适用的保修声明中提供的保修之外,本公司不作任何形式的、 明确的或暗示的保修保证,包括但不限于对适销性和特殊目的适用性的暗含保 修。本公司对间接的、特殊的或由此产生的损坏概不负责。

目录

1. 安全信息	1
一般安全要求	1
安全术语和符号	
9 和台外在 加热人	_
2 . 如何进行一般性检查	4
检查是否存在因运输造成的损坏	4
检查附件	
检查整机	4
3. 使用示波器	5
示波器的结构	
則	
示波器的用户界面介绍	
如何进行功能检查	
如何进行探头补偿	
如何进行探头衰减系数设定	
如何安全使用探头	
垂直系统	
水平系统	12
测量系统	13
自动测量	13
光标测量	14
使用自动设置显示不明信号	15
触发系统	15
如何进行保存设置	
如何进行系统设置	17
4. 使用万用表	19
关于本章	19
仪表界面	
5 使用总是发生器	04
5. 使用信号发生器	21
连接输出端	21
设置波形	
输出正弦波	
输出矩形波	
输出锯齿波	22

箱	输出脉冲波	22
6.	与计算机上位机软件通讯	23
7.	故障处理	24
8.	技术规格	25
示波	波器	25
	用表	
信号	号发生器	27
一般	般技术规格	28
9.	附录	29
附录	录 A: 附件清单	29
	录 B:保养和清洁维护	
	一般保养	
ŧ	电池充电及更换	29
更	更换锂电池组	30

1.安全信息

(在使用该产品前,请务必事先阅读安全信息)

一般安全要求

请阅读下列安全注意事项,以避免人身伤害,并防止本产品或与其相连接的任何其他产品受到损坏。为了避免可能发生的危险,本产品只可在规定的范围内使用。

- 只有合格的技术人员才可执行维修。
- **注意所有终端的额定值**:为了防止火灾或电击危险,请注意本产品的所有额定值和标记。在对本产品进行连接之前,请阅读本产品用户手册,以便进一步了解有关额定值的信息。
- **请勿在无仪器盖板时操作:** 如盖板或面板已卸下,请勿操作本产品。
- 避免接触裸露电路:产品有电时,请勿触摸裸露的接点和部件。
- **在有可疑的故障时,请勿操作:** 如怀疑本产品有损坏,请让合格的维修人员进行检查。
- 请勿在潮湿的环境下操作。
- 请勿在易爆环境中操作。
- 保持产品表面清洁和干燥。
- 不按制造厂规定的方法来使用设备,可能会损坏设备所提供的防护。

安全术语和符号

本手册中的术语

以下术语可能出现在本手册中:

警告: 警告性声明, 指出可能会危害生命安全的条件和行为。

注意: 注意性声明, 指出可能导致此产品和其它财产损坏的条件和行为。

产品上的术语

以下术语可能出现在产品上:

危险:表示您读取此标记时可能会立即对您造成损害。

警告:表示您读取此标记时可能不会立即对您造成损害。

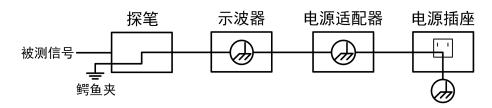
注意:表示可能会对本产品或其它财产造成损害。

产品上的符号

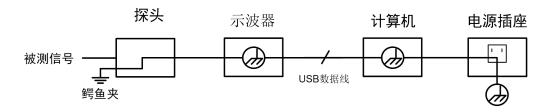
以下符号可能出现在产品上:

高电压 注意请参阅手册 保护性接地端 壳体接地端 测量接地端

为防止触电或失火,请使用适当的电源适配器。只可使用本产品专用、并 且核准可用于该使用国的电源适配器。



示波器通道是非隔离通道。注意测量时通道要采用公共基准,探头的地线 不可以接到非隔离的不同直流电平的地方,否则可能因为示波器探笔的地线连 接引起短路。


▲ 警告:

注意测量时通道要采用公共基准,否则可能因为示波器探笔的地线连接引起短路。

示波器内部地线连接示意图:

示波器通过端口与计算机连接时的内部地线连接示意图:

⚠ 警告:

如果示波器输入端口连接在峰值高于 42V 的(30 Vrms) 的电压或超过 4800 VA 的电路上,为避免触电或失火:

- 只使用示波器附带的并有适当绝缘的电压探针、测试导线和适配器,或 由本公司指明适用于示波器仪表系列产品的配件。
- 使用前,检查万用表测试笔、示波器探极和附件是否有机械损伤,如果 发现损伤,请更换。
- 拆去所有不使用的测试笔、探极和附件(USB等)。
- 先将电源适配器插入交流电插座,然后再将其连接到示波器上。
- 在 CAT II 环境中测试时,不要将高于地表 400 V 以上的电压连接到任何输入端口。
- 在 CAT II 环境中测试时,不要将电压差高于 400 V 的电压连接到隔离的输入端口。
- 不要使用高于仪器额定值的输入电压。在使用 1:1 测试导线时要特别注意,因为探头电压会直接传递到示波器上。
- 不要接触裸露的金属 BNC 或香蕉插头。
- 不要将金属物体插入接头。
- 仅以指定的方式使用示波器。
- 在"警告"信息中提到的电压额定值是"工作电压"的限定值。它们表示交流正弦波应用时的 V ac rms(50-60 Hz); 直流应用时的 V dc。CAT 是前缀,Ⅱ 是指级别,Ⅱ 级是低压高能量级别,是指适用于电器和便携式设备的局部电平。

2.如何进行一般性检查

当您得到一台新的示波器时,建议您按以下步骤对仪器进行检查。

检查是否存在因运输造成的损坏

如果发现包装纸箱或泡沫塑料保护垫严重破损,请先保留,直到整机和附件通过电性和机械性测试。

检查附件

关于提供的附件明细,在本说明书"附录A:附件"已经进行了说明。您可以参照此说明检查附件是否有缺失。如果发现附件缺少或损坏,请和负责此业务的本公司经销商或本公司的当地办事处联系。

检查整机

如果发现仪器外观破损,仪器工作不正常,或未能通过性能测试,请和负责 此业务的本公司经销商或本公司的当地办事处联系。如果因运输造成仪器的损 坏,请注意保留包装。通知运输部门和负责此业务的本公司经销商。本公司会安 排维修或更换。

3.使用示波器

示波器的结构

前面板和按键

示波器的前面板和按键见下图:

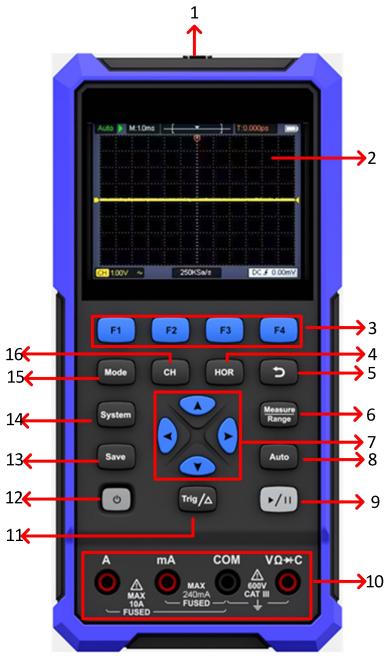


图 3-1: 示波器前面板

说明:

序号	万用表模式说明	示波器模式说明	
1	被测信号输入连接器。		
2	显示区域。		
3	, ,,	E每个菜单模式下,按下相应的按键可选择	
4		按下 HOR 键,通过▲ ▼按键,改变水平时基设置观察因此导致的状态信息变化,可以发现状态栏对应的水平时基显示发生了相应的变化;通过 ▼按键,可以调整信号在波形窗口的水平位置。	
5		返回按键,返回到上一级菜单,当菜单为第一级时,再按返回键关闭菜单(注:当显示返回标识时有效)。	
6	量程切换按键。	测量菜单按键。	
7		按▲ ▼方向键:用于上下移动波形、改变时基、移动电压光标及改变触发电平;按 ▼方向键:用于左右移动波形、改变电压档位、移动时间光标。	
8	自动量程按键。	自动设置按键。	
9	Hold保持按键。	停止/运行按键。	
10	万用表输入端。		
11	相对值按键。	触发菜单按键。	
12	开关按键:长按关机,短按开机。		
13	保存设置按键。		
14	系统设置按键。		
15	示波器、万用表和信号源工作状态切换按键。		
16		通道按键。	

侧面板

图 3-2: 示波器侧面板

说明:

- 1. 探头补偿: 2.5V/1kHz方波信号输出或信号发生器输出连接器。
- 2. 充电或USB通讯接口。
- 3. 支架。

示波器的用户界面介绍

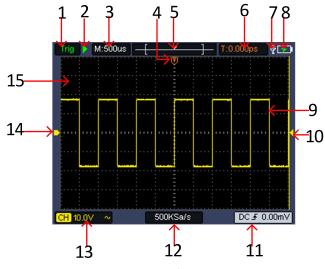


图 3-3: 示波器界面

说明:

1. 触发状态指示下列信息:

Auto: 示波器处于自动方式并正采集无触发状态下波形。

Trig: 示波器已检测到一个触发,正在采集触发后信息。

Ready: 所有预触发数据均已被获取,示波器已准备就绪。

Scan: 示波器以扫描方式连续地采集并显示波形数据。

Stop: 示波器已停止采集波形数据。

- 2. 运行/停止。
- 3. 时基显示。
- 4. 指针表示触发水平位置。
- 5. 指针指示当前存储深度内的触发位置。
- 6. 指示当前触发水平位移的值,显示当前波形窗口在内存中的位置。
- 7. 表示当前有USB数据线插入。
- 8. 电池电量及外部供电指示。
- 9. 通道波形。
- 10. 指针表示通道触发电平位置。
- 11. 图标表示表示触发的相关信息,包括耦合方式、触发类型及触发电平,详见

P15的"触发系统"。

- 12. 当前采样率。
- 13. 通道信息读数表示通道的电压档位。

图标指示通道的耦合方式:

- "一"表示直流耦合:
- "~"表示交流耦合;
- "≟"表示接地耦合。
- 14. 指针表示通道所显示波形的接地基准点(零点位置)。
- 15. 波形显示区。

如何进行功能检查

做一次快速功能检查,以核实本仪器运行正常。请按如下步骤进行:

1. 按下主机左下方的开关键 ()。

机内继电器将发出轻微的咔哒声。仪器执行所有自检项目,进入主界面。默认的探头菜单衰减系数设定值为 **10X**。

2. 示波器探笔上的开关设定为 10X,并将示波器探头与通道连接。 将探头上的插槽对准连接器同轴电缆插接件(BNC)上的插头并插入, 然后向右旋转并拧紧探头。

把探头端部和接地夹接到探头补偿器的连接器上,请注意端子极性, 方形端子代表信号输出,圆形端子表示参考地。

3. 按前面板 "Auto" 按键。

几秒钟内,可见到方波显示(1kHz/2.5Vpp),见图 3-4。 **注意:** 如显示的波形不是方波时,请按下 **System** ,再按下 **F3** (默认设置),可见到方波显示。

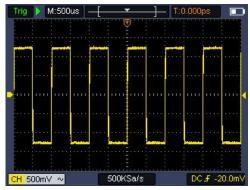


图 3-4: 自动设置

如何进行探头补偿

在首次将探头与输入通道连接时,进行此项调节,使探头与输入通道相配。

未经补偿或补偿偏差的探头会导致测量误差或错误。若调整探头补偿,请按如下步骤:

- 1、 将探头菜单衰减系数设定为 **10X**,将探头上的开关设定为 **10X**(参见 P10的"如何进行探头衰减系数设定"),并将示波器探头与通道连接。如使用探头钩形头,应确保与探头接触紧密。将探头端部与探头补偿器的信号输出连接器相连,基准导线夹与探头补偿器的地线连接器相连,然后按 **Auto** 前面板按键。
- 2、 检查所显示的波形,调节探头,直到补偿正确。见图 3-5,图 3-6。

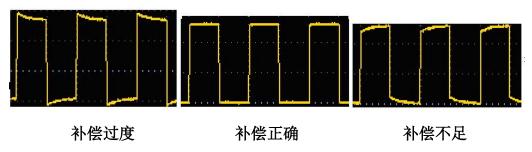


图 3-5: 探头补偿显示波形

3、 必要时, 重复步骤。

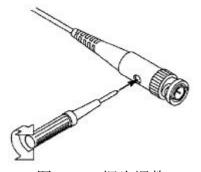


图 3-6: 探头调整

如何进行探头衰减系数设定

探头有多种衰减系数,它们会影响示波器垂直档位因数。

如要改变(检查)示波器菜单中探头衰减系数设定值,请按下 **F2** 键,选择所需的衰减系数。该设定在再次改变前一直有效。

注意:示波器出厂时菜单中的探头衰减系数的预定设置为 10X。 需确认在探头上的衰减开关设定值与示波器菜单中的探头衰减 系数选项相同。

探头开关的设定值为 1X 和 10X。见图 3-7。

图 3-7: 探头衰减开关

 Λ

如何安全使用探头

环绕探头体的安全环提供了一个手指不受电击的防护。见图 3-8。

图 3-8: 探头手指安全环

⚠

警告: 为了防止在使用探头时受到电击,请将手指保持在探头体上安全环的后面。

为了防止在使用探头时受到电击,在探头连接到电压源时不要接触探头头部的金属部分。

在做任何测量之前,请将探头连接到仪器并将接地终端连接到地面。

垂直系统

可使用垂直系统调整垂直刻度和位置及通道的其他设置。

垂直位置

按下 CH 键,通过按 ▲ 或 ▼ 方向键上下移动通道的垂直位置,同时按住两个方向键可以使垂直位置居中。

垂直伏/格设置

伏/格范围是 10mV/div-10V/div (探头 1X),以 1-2-5 方式步进,或 100mV/div-100V/div (探头 10X)、1V/div-1000V/div (探头 100X)、10V/div-10000V/div (探头 1000X)。 按下 **CH** 键,通过按 ◀ 和 ▶ 方向键更改通道的伏/格设置。

垂直系统设置菜单说明如下表:

功能菜单	设定	说明
耦合	直流 交流 接地	普通采样方式通过输入信号的交流和直流成分。 阻挡输入信号的直流成分。 断开输入信号。
探头	1X 10X 100X 1000X 10000X	根据探头衰减因数选取其中一个值,以保持垂直标尺读数准确。

水平系统

按 HOR 键,进入水平系统设置菜单,使用 ◀ 和 ▶ 方向键可改变水平刻度 (时基)、水平触发位置。改变水平刻度时,波形相对于屏幕中心放大或缩小,水平位置改变时即相对于波形触发点的位置变化。

注:同时按住◀ ▶两个方向键可以使水平位置居中。

水平系统设置菜单说明如下表:

功能菜单	设定	说明
亚佳档士	采样	普通采样方式。
采集模式 -	峰值检测	用于检测干扰毛刺和减少混淆的可能性。
记录长度	4K 8K	选择要记录的长度。

硬件频率	关闭 开启	开启/关闭硬件频率。
1/2		进入下一页菜单。
刷新率	高 低	设置刷新率为"高"或"低"。
水平居中		水平触发位置设置在屏幕中间。
2/2		返回上一页菜单。

测量系统

自动测量

按 Range 按键,按下 F1 键,可实现自动测量,屏幕左下方显示测量 类型。

自动量程类型包含:频率、周期、幅度、最大值、最小值、峰峰值、平均值、均方根值。

自动测量功能菜单说明如下表:

	功能菜单		说明
		开启 关闭	开启或关闭自动测量。
自动测量	添加删除	频率(F)□ 周期(T)□ 幅度(Va)□ 最小值(Mi)□ 最大值(Ma)□ 峰峰值(Vpp)□ 平均值(V)□ 均方根值(RMS)□	添加或删除选中的测量类型。 注:未选中状态为 □; 选中状态为 ■。

电压参数的自动测量

示波器可以自动测量的电压参数包括平均值、峰峰值、均方根值、最大值、最小值、幅度。下图表述了一组电压参数的物理意义。

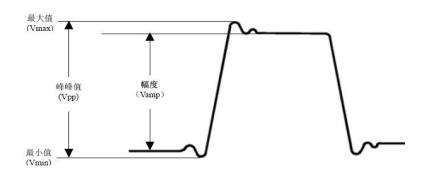


图 3-9: 电压参数定义示意(顶端平整有脉冲信号)

平均值(Average):整个波形或选通区域上的算数平均值。

峰峰值(Vpp):波形最高点波峰至最低点的电压值。

均方根值(Vrms):整个波形或选通区域上的精确"均方根"电压。

最大值(Vmax):波形最高点至 GND(地)的电压值。最小值(Vmin):波形最低点至 GND(地)的电压值。

幅度(Vamp):波形顶端至底端的电压值。

时间参数的自动测量

示波器可以自动测量信号的周期、频率。

光标测量

按 Range 按键,按下 F2 键,可实现光标测量。

光标测量菜单说明如下表:

功能菜单	设定	说明
	电压	选择显示电压测量光标和菜单。
类型	时间	选择显示时间测量光标和菜单。
	关闭	关闭光标测量。
		当类型选择 电压 时,通过按 ▲ ▼ 方向键,移动A
Α		光标线; 当类型选择 时间 时,通过按 ◀ ▶ 方
		向键,移动A光标线。
		当类型选择 电压 时,通过按 ▲ ▼ 方向键,移动B
В		光标线; 当类型选择 时间 时,通过按 ◀ ▶ 方
		向键,移动B光标线。
AB		链接A与B,通过按 ▲ ▼ 方向键,可同时移动两

使用自动设置显示不明信号

自动设置功能使示波器得以自动显示、测量不明信号。该功能可优化位置、 量程、时基和触发,并确保任何波形的稳定显示。该功能在快速检查若干个信号 时尤为有用。

要启用自动设置功能,执行下列步骤:

- 1. 把示波器探极连接于被测信号。
- 2. 按 Auto 键,示波器进入自动测量状态,屏幕上会显示出被测信号。

触发系统

触发决定了示波器何时开始采集数据和显示波形。一旦触发被正确设定,它 可以将不稳定的显示转换成有意义的波形。

示波器在开始采集数据时,先收集足够的数据用来在触发点的左方画出波 形。示波器在等待触发条件发生的同时连续地采集数据。当检测到触发后,示波 器连续地采集足够的数据以在触发点的右方画出波形。

本系列示波器的触发方式为边沿触发。

边沿触发方式是在输入信号边沿的触发电平上触发,即在输入信号的上升沿、下降沿触发。

进入边沿触发,屏幕右下角显示触发设置信息,如 DC **J** 0.00mV ,表示触发类型为上升沿,触发耦合为 DC , 触发电平为 0.00mV。

触发系统设置菜单说明如下表:

功能菜单	设定	说明
耦合	交流 直流	设置阻止直流分量通过。 设置允许所有分量通过。
触发类型	自动 正常 单次	设置在没有检测到触发条件下也能采集波形。 设置只有满足触发条件时才采集波形。 设置当检测到一次触发时采样一个波形,然后 停止。
斜率	上升沿 下降沿	设置在信号上升沿触发。 设置在信号下降沿触发。

1/2	进入下一页菜单
触发居中	触发位置设置在波形中间位置。
强制触发	强制触发按键,强制产生一个触发信号,主要应用于触发方式中的"正常"和"单次"模式。
2/2	返回上一页菜单

触发电平: 设置采集波形时信号所必须越过的幅值电平。按 **Trig/**△ 按键进入触发菜单,按 ▲ 或 ▼ 按键来上下调节触发电平。

如何进行保存设置

按下 Save 按键,进入保存功能菜单,通过操作保存功能菜单,可存储示波器设置、参考波形、文件。

● 设置

任何的设置可以被保存到示波器内部,也可调出恢复设置。 设置 菜单说明如下表:

功能菜单	设定	说明
目标	\$1 \$2 \$3 \$4	设置波形名称。
保存		保存示波器当前的参数设置到内部存储器。
调用		调用保存在当前存储位置的设置。

● 参考波形

可以把实际波形和参考波形进行比较,从而找出差异。按下 Save 按键,进入保存功能菜单,按 F2 选择参考波形,进入参考波形菜单。

参考波形菜单说明如下表:

功能菜单	设定	说明
	R1	
目标	R2	 设置波形名称。
口7小	R3	
	R4	
显示	开启 关闭	调出或关闭内部存储器中当前目标地址的波形。当显示开启时,如当前地址已有存储波形,则显示波形,左上角显示地址编号及波形相关信息;如当前地址未被存储,则显示"地址编号:无保存波形"。
保存		把信源的参考波形存储到存储器中。

● 文件

文件保存可以保存的类型为波形或图像,波形及图像可以通过重新插拔 USB 数据线或在系统设置下一页 USB 选项选择为 MSC 来读取。

文件菜单说明如下表:

功能	功能菜单		设定	说明
	波形	文件 名	wave1 wave2 wave3 wave4	选择存储波形的文件名。
文		保存		把信源的波形存储到指定文件名命名的 csv 文件中。
件	图像	文件 名	image1 image2 image3 image4	选择存储波图像的文件名。
		保存		把当前屏幕图像存储到指定文件名命名的 bmp文件中。

如何进行系统设置

按下 System 按键,进入系统功能菜单。

● 显示

菜单说明如下表:

木牛奶奶知	1 10:	
功能菜单	设定	说明
亮度	10%~100%	设置屏幕背光亮度,以10%循环递增。
背光时间	30s 60s 120s 无限	设置屏幕背光亮度时间,无限表示常亮。
菜单时间	5s 10s 20s 30s 60s	设置菜单显示时间。
己开机	00h: 00m	显示开机时长。

● 系统

菜单说明如下表:

功能菜单	设定	说明
语言		设置菜单语言。
<u></u> 关机时间	10分钟	设置自动关机时间。无限表示不关机,若单

	30分钟 60分钟 无限	使用电池时,请注意此项设置。
1/2		进入下一页菜单
关于		按下可显示仪器型号、序列号、版本等。
升级		进行系统升级,升级包版本需高于仪器本身 版本。
2/2		返回上一页菜单

● 默认设置

按 System 按键,进入系统设置菜单,选择 F3 键默认设置,屏幕显示提示 "再按<F3>执行默认设置,否则按返回键",如需执行默认设置则再按 F3 键,完成默认设置,否则请返回键。

● USB 连接

按 System 按键,进入系统设置菜单,选择 F4 键进入下一页,按下 F1 键,选择 HID 或 MSC。

- 1) MSC[Mass Storage Class]用于选择使 USB 读取机身自带的存储容量存储的文件。
- 2) **HID[Human interface Device]** 用于选择示波器设备作为主机与电脑进行上位机控制与通信。

● 厂家设置

若要进行出厂设置,按下 System 键,按菜单选择键 F4 进入下一页,按下 F2 键,屏幕显示提示"再按<F2>执行厂家设置,否则按返回键",如需执行厂 家设置则再按 F2 键,完成厂家设置,否则请返回键。

● 自动校正

自校正程序可迅速地使示波器达到最佳状态,以取得最精确的测量值。您可在任何时候执行这个程序,但如果环境温度变化范围达到或超过5℃时,您必须执行这个程序。

若要进行自校正,应将所有探头或导线与输入连接器断开。然后,按 System 键,按菜单选择键 F4 进入下一页,按下菜单选择键 F3,屏幕显示提示"断开所有输入,再按<F3>执行自动校正,否则按返回键",确认准备就绪后按 F3 执行自动校正,否则请返回键。

4.使用万用表

关于本章

本章逐步介绍了示波器的万用表功能,提供了一些如何使用菜单及进行基本 操作的基础范例。

仪表界面

万用表使用四个安全香蕉插口输入端:分别为 A、mA、COM、VΩ→+C。 万用表界面:

说明:

1. 测量种类指示:

电压	 直流电压测量
~ 电压	 交流电压测量
电流	 直流电流测量
~ 电流	 交流电流测量

Ω 电阻 ------ 电阻测量

计 二极管 ----- 二极管测量

① : 通断 ------ 通断测量

----- 电容测量

- 2. 量程指示: 手动 表示手动量程, 自动 表示自动量程。
- 3. 当前测量量程。
- 4. 表示当前有USB数据线插入。
- 5. 电池电量及外部供电指示。
- 6. Hold可以使当前读数保持在显示屏上。
- 7. 测量数值及单位。
- 8. 切换电阻、蜂鸣器、二极管、电容测量功能显示处。
- 9. 电压测量时选择的量程 V 或 mV; 电流测量时选择的量程 A 或 mA。
- 10. 选择测量交流电流或直流电流。
- 11. 选择测量交流电压或直流电压。
- 12. 相对值测量功能显示(仅有在测量直流电流,直流电压、电阻状态下可用)。

5.使用信号发生器

仪器可提供正弦波、矩形波、锯齿波、脉冲波 4 种基本波形。

连接输出端

按 Mode 按键,将仪器界面切到信号发生器界面。

将探头端部和接地夹接到探头补偿器的连接器上,请注意端子极性,方形端子 代表信号输出,圆形端子表示参考地。

若要查看信号发生器的输出,可将探头上的插槽端插入示波器的信号输入通道。

注: BNC 输出端口不允许输入任何信号,如电压、电流和其他电信号,否则会被烧毁。

图 5-1: 信号发生器输出端

设置波形

- (1) 按 Mode 按键,将仪器界面切到信号发生器界面。
- (2) 在 | F1 | 选择所需波形, 屏幕将显示对应波形的设置菜单。
- (3) 通过操作面板 **F3-F4** 和 ▲ ▼ ◆ **▶** 面板按键设置所需波形的参数。

输出正弦波

正弦波设置菜单包括:频率、幅度。

设置频率

按下 **F1** 按键,切换到正弦波设置界面。

按下 **F3** 或 **F4** 按键,切换到 频率 参数,被选中的参数项字体将以绿色显示 (下同),再通过 ▲ ▼ ◆ ▶ 方向按键通过在参数栏中设置所需的参数 值。

使用 ▲ ▼ ◀ ▶ 方向按键改变选中的参数值:

按 ▲ ▼ 可使光标处的数值增大或减小。按 ▼ 方向键可左右移动光标至不同的数值位。

设置幅度

按下 $\boxed{\textbf{F3}}$ 或 $\boxed{\textbf{F4}}$ 按键,切换到 幅度 参数,再通过 $\boxed{\blacktriangle}$ $\boxed{\blacktriangledown}$ 方向按键通过在参数栏中设置所需的参数值。

输出矩形波

按下 F1 按键,切换到矩形波设置界面。

矩形波的设置菜单包括: 频率、幅度。

关于设置频率、幅度,请参看 P21 的"输出正弦波"。

输出锯齿波

按下 F1 按键,切换到锯齿波设置界面。

锯齿波的设置菜单包括: 频率、幅度、对称度。

关于设置频率、幅度,请参看 P21 的"输出正弦波"。

设置锯齿波的对称度

按下 **F3** 或 **F4** 按键,切换到 对称度 参数,通过 ▲ ▼ **◆** ▶ 方向按键通过在参数栏中设置所需的参数值。

输出脉冲波

按下 **F1** 按键,切换到脉冲波设置界面。

脉冲波的设置菜单包括: 频率、幅度、占空比。

关于设置频率、幅度,请参看 P21 的"输出正弦波"。

设置脉冲波的占空比

按下 $\boxed{\textbf{F3}}$ 或 $\boxed{\textbf{F4}}$ 按键,切换到 占空比 参数,再通过 $\boxed{\hspace{0.1cm}}$ $\boxed{\hspace{0.1cm}}$ 方向按键通过在参数栏中设置所需的参数值。

6. 与计算机上位机软件通讯

示波器支持通过 USB 与计算机上位机进行通讯。安装在计算机的示波器上位机软件提供了对示波器测量数据的存储、分析和显示以及远程控制等功能。

对于示波器上位机软件的具体操作方法,请在我们的下载官网下载并查看 上位机帮助文档。

下面介绍怎样与计算机进行连接。请在我们的官网获取上位机软件安装包到您的计算机上,并双击它,根据提示点击直至安装完成。

- (1) **连接:** 用 USB 数据线将示波器 **USB 通讯接**口与计算机的 USB 接口连接起来。
- (2) **USB** 口**设置**: 示波器的 USB 接口协议类型需切换为 **HID** (按 **System** → **F4**→ **USB** ,切换为 **HID**)。
- (3) 打开示波器软件, 在软件界面的右下角的连接状态提示变为绿色。

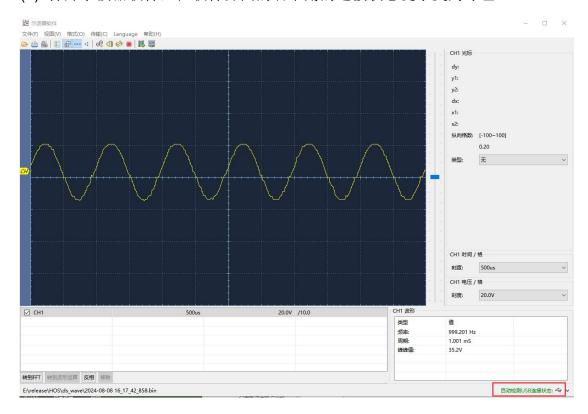


图 6-1: 通过 USB 接口与计算机连接

7. 故障处理

1. 示波器不能启动。

可能是电池的电量已完全耗尽。这时,即使由电源适配器供电,示波器仍不能启动。首先需要给电池充电,先不要打开示波器。等待约15分钟后,再尝试打开示波器。如果仍然无法启动,请与我们联系,让我们为您服务。

2. 启动数秒钟后示波器即关闭。

可能是电池的电量已耗尽。查看屏幕左上方的电池符号。□ 符号表示电池已耗尽,必须充电。

3. 切换到万用表,测量种类显示 E。

可能是没有选择测量种类,这时,按下 **F4** 键,测量种类应会显示对应的测量种类。如果仍然显示 **E** ,重新启动示波器。

4. 在示波器状态下,测量电压幅度值比实际值大 10 倍或小 10 倍。

检查通道衰减系数是否与实际使用的探头误差比例相符。

- 5. 在示波器状态下,有波形显示,但不能稳定下来。
 - 检查触发模式菜单中的信源项是否与实际使用的信号通道相符。
 - 检查触发电平是否已经超过波形范围。只有合理设置参数,波形才能稳定显示。

6. 在示波器状态下,按下 RUN/STOP 键无任何显示

检查触发模式菜单的触发方式是否在正常或单次,且触发电平超出波形范围。如果是,将触发电平居中,或者设置触发方式为自动。另外,按 **Auto** 键可自动完成以上设置。

7. 在示波器状态下,在采集模式中设置为平均值采样或显示设置中持续时间设置较长后,显示速度变慢。

这属于正常现象。

8.技术规格

除非另有说明,所用技术规格都适用于衰减开关设定为10X 的探头和本系列示波器。示波器必须首先满足以下两个条件,才能达到这些规格标准:

- 仪器必须在规定的操作温度下连续运行三十分钟以上。
- 如果操作温度变化范围达到或超过5°C,必须打开系统功能菜单,执行"自校正"程序(请参见P17的"如何进行系统设置"中的自动校正)。

除标有"典型"字样的规格以外,所用规格都有保证。

示波器

特性		说明		
		HDS241	40 MHz	
带宽		HDS271	70 MHz	
	垂直分辨率	8 位		
	通道	1		
	采样方式	采样,峰值村	金测	
采样	实时采样率	250 MSa/s		
	波形刷新率	10,000 wfms	/s	
	输入耦合	直流、交流、		
输入	输入阻抗(直流耦合)	1 M $\Omega\pm2\%$,	与 16pF±10 pF 并联	
刊八	探头衰减系数	1X、10X、1	00X、1000X、10000X	
	最大输入电压	400 V (DC	+ AC 峰值)	
	采样率范围	0.25 Sa/s∼250 MSa/s		
	波形内插	Sinx/x		
水平	扫速范围(S/div)	5ns/div - 1000s/div,按 1 – 2 – 5 进制方式步进		
	时基精度	\pm 100ppm		
	记录长度	8K 或 4K 可选		
	灵敏度(伏/格)范围	10 mV/div∼10 V/div		
	位移范围	`	//div – 200 mV/div)) mV/div – 10V/div)	
垂直	推州	HDS241	40 MHz	
来中	模拟带宽	HDS271	70 MHz	
	低频响应(交流耦合,	≥10 Hz		
	-3dB)			

	上升时间(BNC	上典型	HDS241	≤ 8 ns	
	的)		HDS271	≤ 5 ns	
	直流增益精确度		±3%		
	光标测量		光标间电压差	É(△V)、光标间时间差(△T)	
测量	自动测量		周期、频率、 均值、均方标	幅度、峰峰值、最大值、最小值、平 艮值	
	触发类型		边沿触发		
	耦合		直流、交流		
	触发模式		自动、正常、单次		
触发	触发电平范围		距屏幕中心 ±4 格		
	触发电平精确度		±0.3 格		
	触发位移		根据存储深度和时基档位不同		
	边沿触发	斜率	上升沿、下降	拳 沿	

万用表

特性	说明
数字显示	24000读数
测量种类	电压、电流、电阻、电容、通断、二极管
最大输入电压	AC: 750V DC: 1000V
最大输入电流	AC : 10A DC : 10A

基本功能	量程	最小分辨率	精度
	24.000mV	0.001mV	\pm (0.3%+20dig)
	240.00mV	0.01mV	\pm (0.3%+6dig)
直流电压	2.4000V	0.1mV	
且狐巴压	24.000V	1mV	\pm (0.3%+5dig)
	240.00V	0.01V	
	1000.0V	0.1V	\pm (0.3%+10dig)
	24.000mV	0.001mV	
	240.00mV	0.01mV	
	2.4000V	0.1mV	\pm (0.8%+10dig)
交流电压[1]	24.000V	1mV	
	240.00V	0.01V	
	750.0V	0.1V	± (1.0%+10dig)
	频率范围: 40日	Hz-1000Hz	
	24.000mA	0.001mA	\pm (0.8%+10dig)
直流电流	240.00mA	0.01mA	
上りについ	2.400A	0.1mA	± (1.5%+10dig)
	10.000A	1mA	± (2.5%+10dig)

		安档: 自恢复 40	
	── ►安均	音档:10A/600\	V,D5.2*20,快断
	24.000mA	0.001mA	$\pm (1.0\% + 10 \text{dig})$
	240.00mA	0.01mA	<1.070* Todig/
	2.4000A	0.1mA	± (2.0%+10dig)
交流电流 [1]	10.000A	1mA	\pm (2.8%+10dig)
	频率范围: 40년		
		安档:自恢复 40 音档:10A/600\	00mA/250V V,D5.2*20,快断
	240.00Ω	0.01Ω	\pm (0.8%+10dig)
	2.4000kΩ	0.1Ω	
	24.000kΩ	1Ω	
电阻	240.00kΩ	10Ω	\pm (0.8%+5dig)
	2.4000ΜΩ	0.1kΩ	
	24.000ΜΩ	1kΩ	\pm (1.0%+3dig)
	100.00ΜΩ	0.01ΜΩ	\pm (5.0%+10dig)
	2.000nF	1pF	\pm (5.0%+10dig)
	20.00nF	10pF	
	200.0nF	100pF	
电容[1]	2.000µF	1nF	
电合 "	20.00µF	10nF	\pm (3.0%+10dig)
	200.0µF	100nF	
	2.000mF	1uF	
	20.00mF	10uF	
	通断测试	√ (< 50Ω)	
其他	二极管测试	√ (<0-2V)	
央他	自动量程	√	
	真有效值	√	

[1] 交流电压/电流、电容测量时,准确度保证范围为5%至100%量程。

信号发生器

特性	说明		
	正弦波	10Hz~100KHz,1-2-5步进	
频率特性	矩形波	10Hz~100KHz,1-2-5步进	
妙学 付注	锯齿波	10Hz~100KHz,1-2-5步进	
	脉冲波	10Hz~10KHz,1-2-5步进	
—————————————————————————————————————	1Vpp或2	2.5Vpp	

一般技术规格

显示

特性	说明
显示类型	3.5 英寸的彩色液晶显示
显示分辨率	320水平×240垂直像素
显示色彩	65536 色

电源

特性	说明
电源	DC INPUT: 5VDC, 2A
耗电	<5 W
电池	2000mAh (3.7V, 103450)

环境

特性	说明
温度	工作温度: 0℃~40℃
	存贮温度: -20℃~+60℃
相对湿度	≪90%
高度	操作3,000 米
	非操作15,000 米
冷却方法	自然冷却

机械规格

特性	说明
尺寸	198 mm (长) × 96mm(高) × 38 mm(宽)
重量	约0.6公斤(主机,不含电池)

调整间隔期:建议校准间隔期为一年。

9. 附录

附录 A: 附件清单

- 一根 USB 连接线
- 一根无源探头
- 一副万用表表笔(红黑各一支)
- 一本快速指南
- 一把探笔校正调刀

附录 B: 保养和清洁维护

一般保养

请勿把仪器储存或放置在液晶显示屏会长时间受到直接日照的地方。

小心:请勿让喷雾剂、液体和溶剂沾到仪器或探头上,以免损坏仪器或探头。

清洁:

根据操作情况经常对仪器和探头进行检查。按照下列步骤清洁仪器外表面:

- 1. 请用质地柔软的布擦拭仪器和探头外部的浮尘。清洁液晶显示屏时,注 意不要划伤透明的 LCD 保护屏。
- 2. 用潮湿但不滴水的软布擦试仪器,请注意断开电源。可使用柔和的清洁 剂或清水擦洗。请勿使用任何磨蚀性的化学清洗剂,以免损坏仪器或探头。

警告: 在重新通电使用前,请确认仪器已经干透,避免因水分造成电气 短路甚至人身伤害。

电池充电及更换

设备在长期的存储过程中,有可能出现由于锂电池自放电所导致电量过低,设备不能开机,这属于正常现象。

请使用附带的USB连接线给设备进行预充电0.5~1小时(视存储时间而定) 再开机。另外,如果设备长时间不使用,建议每隔一段时间就充一下电,以免锂 电池过放电。

电池充电

出厂时,锂电池可能并未充满电。要使电池电量充足,请自行充电。 屏幕右上角的供电及电量指示符号说明如下:

- ₩ 符号表示开机充电状态;
- 一一符号表示电池供电;
- 一符号表示大约只剩五分钟的使用时间,请按照相关提示尽快充电以免损伤电池。

充电方式

通过 USB 接口对示波器充电:通过 USB 数据线将示波器连接到计算机或其他设备进行充电(应注意供电设备的带载能力,以免造成设备工作不正常)。

注意

为避免充电时电池过热,环境温度不得超过技术规格中给定的允许值。

更换锂电池组

通常不需要更换电池组。但当有这种需要时,只能由有资格的人员进行更 换,并且只能使用**同规格的锂电池**。